• Title/Summary/Keyword: Initial data

Search Result 4,975, Processing Time 0.039 seconds

The Contents and Satisfation of Home Care Progral Delivered by Seoul Nurses Association (서울시 간호사회 가정간호시범사업 서비스 내용 및 만족도 분석)

  • Lim, Nan-Young;Kim, Keum-Soon;Kim, Young-lm;Kim, Kwuy-Bun;Kim, Si-Hyun;Park, Ho-Ran
    • The Korean Nurse
    • /
    • v.36 no.1
    • /
    • pp.59-76
    • /
    • 1997
  • The purposes of this study were to identify the contents and satisfaction level of the patients received home care service, and to compare the differences of the contents by the characteristics of the patients. Seventy eight patients received home care service from 1st Jan. to 30th Sept., 1996 were data-collected to analyze the contents and outcomes of home care service. Sixty-nine patients currently receiving home care service were participated to evaluate the satisfaction level of home care service. The data were analyzed using mean, standard deviation, $x^2$ test, and ANOVA by SPSS $PC^+$ program. The findings of this study were as follow : 1. The contents & outcomes of home care service 1) The mean age of the subjects was 64.4 years: 58% of them were female. Those who living in Seoul were 83% and the rest of the subjects was living in Kyung-Gi. 2) The subjects who had one diagnosis were 41%. Over 60% of them had the disease of neurologic & sensory system. 3) The mean number of visit was 6. Only one visit was 22%. The mean time of care was 79 minutes. Duration of visit from 31 minutes to 60 minutes were 47 %. The subjects who terminated the visit because of death were 67.3%. 62% of the persons who referred them to the home care service were nurses. 4) The pain after the service was more relieved than before. The amounts of intake, the degree of bed sore, edema & fracture after the service were more improved than before. Health status after the service was improved in general. 5) There were significant differences between initial and last conscious level in tracheostomy care & oxygen inhalation care. There was significant difference between initial and last degree of activity in blood sugar check. 6) There were significant differences on the number of visit in assessment of the status, evaluation & observation, vital sign check, skin care, injection, medication, bed sore care, colostomy care, relaxation therapy for pain relief, patient education, family care, exercise therapy, position change, supply of disinfected equipments and infection control. There were significant differences on visiting time in nasogastric tube care, drainage tube care and oxygen inhalation care. 2. The satisfaction level of home care service 1) 50% were male. Over 60 years of the subjects was 61 %. Those who living in Seoul were 82%. 2) The subjects who had one or two diagnosis were 32% respectively. 55% of the persons who referred them to the home care service were nurses. 3) Total level of satisfaction of home care service was very high. 4) The older the age, the higher the satisfaction level. The larger the number of visit, the higher the satisfaction level. 5) The subjects who were in cloudy state were higher level of satisfaction than in alert or coma state. The subjects whose activity were normal or who needed assistance were higher level of satisfaction than bedridden or immobilized subjects. These findings suggested that the patients had substantial need for posthospital care. They tended to be elderly and to have experienced the wide range of health problems associated with aging, chronicity, including limitations in activities, and other serious health problems. So, the nationwide home care systems beyond the limit of demonstration program by local association and the development of the effective financial system of home based health care are necessary for the clients who are in need of home care.

  • PDF

Job Preference Analysis and Job Matching System Development for the Middle Aged Class (중장년층 일자리 요구사항 분석 및 인력 고용 매칭 시스템 개발)

  • Kim, Seongchan;Jang, Jincheul;Kim, Seong Jung;Chin, Hyojin;Yi, Mun Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.247-264
    • /
    • 2016
  • With the rapid acceleration of low-birth rate and population aging, the employment of the neglected groups of people including the middle aged class is a crucial issue in South Korea. In particular, in the 2010s, the number of the middle aged who want to find a new job after retirement age is significantly increasing with the arrival of the retirement time of the baby boom generation (born 1955-1963). Despite the importance of matching jobs to this emerging middle aged class, private job portals as well as the Korean government do not provide any online job service tailored for them. A gigantic amount of job information is available online; however, the current recruiting systems do not meet the demand of the middle aged class as their primary targets are young workers. We are in dire need of a specially designed recruiting system for the middle aged. Meanwhile, when users are searching the desired occupations on the Worknet website, provided by the Korean Ministry of Employment and Labor, users are experiencing discomfort to search for similar jobs because Worknet is providing filtered search results on the basis of exact matches of a preferred job code. Besides, according to our Worknet data analysis, only about 24% of job seekers had landed on a job position consistent with their initial preferred job code while the rest had landed on a position different from their initial preference. To improve the situation, particularly for the middle aged class, we investigate a soft job matching technique by performing the following: 1) we review a user behavior logs of Worknet, which is a public job recruiting system set up by the Korean government and point out key system design implications for the middle aged. Specifically, we analyze the job postings that include preferential tags for the middle aged in order to disclose what types of jobs are in favor of the middle aged; 2) we develope a new occupation classification scheme for the middle aged, Korea Occupation Classification for the Middle-aged (KOCM), based on the similarity between jobs by reorganizing and modifying a general occupation classification scheme. When viewed from the perspective of job placement, an occupation classification scheme is a way to connect the enterprises and job seekers and a basic mechanism for job placement. The key features of KOCM include establishing the Simple Labor category, which is the most requested category by enterprises; and 3) we design MOMA (Middle-aged Occupation Matching Algorithm), which is a hybrid job matching algorithm comprising constraint-based reasoning and case-based reasoning. MOMA incorporates KOCM to expand query to search similar jobs in the database. MOMA utilizes cosine similarity between user requirement and job posting to rank a set of postings in terms of preferred job code, salary, distance, and job type. The developed system using MOMA demonstrates about 20 times of improvement over the hard matching performance. In implementing the algorithm for a web-based application of recruiting system for the middle aged, we also considered the usability issue of making the system easier to use, which is especially important for this particular class of users. That is, we wanted to improve the usability of the system during the job search process for the middle aged users by asking to enter only a few simple and core pieces of information such as preferred job (job code), salary, and (allowable) distance to the working place, enabling the middle aged to find a job suitable to their needs efficiently. The Web site implemented with MOMA should be able to contribute to improving job search of the middle aged class. We also expect the overall approach to be applicable to other groups of people for the improvement of job matching results.

Predictive Clustering-based Collaborative Filtering Technique for Performance-Stability of Recommendation System (추천 시스템의 성능 안정성을 위한 예측적 군집화 기반 협업 필터링 기법)

  • Lee, O-Joun;You, Eun-Soon
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.119-142
    • /
    • 2015
  • With the explosive growth in the volume of information, Internet users are experiencing considerable difficulties in obtaining necessary information online. Against this backdrop, ever-greater importance is being placed on a recommender system that provides information catered to user preferences and tastes in an attempt to address issues associated with information overload. To this end, a number of techniques have been proposed, including content-based filtering (CBF), demographic filtering (DF) and collaborative filtering (CF). Among them, CBF and DF require external information and thus cannot be applied to a variety of domains. CF, on the other hand, is widely used since it is relatively free from the domain constraint. The CF technique is broadly classified into memory-based CF, model-based CF and hybrid CF. Model-based CF addresses the drawbacks of CF by considering the Bayesian model, clustering model or dependency network model. This filtering technique not only improves the sparsity and scalability issues but also boosts predictive performance. However, it involves expensive model-building and results in a tradeoff between performance and scalability. Such tradeoff is attributed to reduced coverage, which is a type of sparsity issues. In addition, expensive model-building may lead to performance instability since changes in the domain environment cannot be immediately incorporated into the model due to high costs involved. Cumulative changes in the domain environment that have failed to be reflected eventually undermine system performance. This study incorporates the Markov model of transition probabilities and the concept of fuzzy clustering with CBCF to propose predictive clustering-based CF (PCCF) that solves the issues of reduced coverage and of unstable performance. The method improves performance instability by tracking the changes in user preferences and bridging the gap between the static model and dynamic users. Furthermore, the issue of reduced coverage also improves by expanding the coverage based on transition probabilities and clustering probabilities. The proposed method consists of four processes. First, user preferences are normalized in preference clustering. Second, changes in user preferences are detected from review score entries during preference transition detection. Third, user propensities are normalized using patterns of changes (propensities) in user preferences in propensity clustering. Lastly, the preference prediction model is developed to predict user preferences for items during preference prediction. The proposed method has been validated by testing the robustness of performance instability and scalability-performance tradeoff. The initial test compared and analyzed the performance of individual recommender systems each enabled by IBCF, CBCF, ICFEC and PCCF under an environment where data sparsity had been minimized. The following test adjusted the optimal number of clusters in CBCF, ICFEC and PCCF for a comparative analysis of subsequent changes in the system performance. The test results revealed that the suggested method produced insignificant improvement in performance in comparison with the existing techniques. In addition, it failed to achieve significant improvement in the standard deviation that indicates the degree of data fluctuation. Notwithstanding, it resulted in marked improvement over the existing techniques in terms of range that indicates the level of performance fluctuation. The level of performance fluctuation before and after the model generation improved by 51.31% in the initial test. Then in the following test, there has been 36.05% improvement in the level of performance fluctuation driven by the changes in the number of clusters. This signifies that the proposed method, despite the slight performance improvement, clearly offers better performance stability compared to the existing techniques. Further research on this study will be directed toward enhancing the recommendation performance that failed to demonstrate significant improvement over the existing techniques. The future research will consider the introduction of a high-dimensional parameter-free clustering algorithm or deep learning-based model in order to improve performance in recommendations.

A Study on Establishing a Standardized Process for the Development and Management of Food Safety Health Indicators in Korea (우리나라 식품안전보건지표의 개발 및 운용과정 정립에 대한 연구)

  • Byun, Garam;Choi, Giehae;Lee, Jong-Tae
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.3
    • /
    • pp.217-226
    • /
    • 2015
  • This study was conducted to establish a standardized process for developing food safety health indicators. With this aim, we proposed a standardized process, accessed the validity of the suggested process by performing simulations, and provided a method to utilize the indicators. Developing process for domestic environmental health indicators was benchmarked to propose a standardized process for developing food safety health indicators, and DPSEEA framework was applied to the development of indicators. The suggested standardized process consists of an exploitation stage and a management stage. In the exploitation stage, a total of 6 procedures (initial indicators suggestion, candidate indicators selection, data availability assessment, feasibility assessment, pilot study, and final indicator selection) are conducted, and the indicators are routinely calculated and officially announced in the management stage. The exploitation stage is operated by an interaction between a task force team who manages the overall process, and an advisory committee (minimum of 4 in academia, 2 in research, 4 in specialists of Ministry of Food and Drug Safety) who reviews and performs evaluations on the indicators. The standardized process was simulated with 45 initial indicators, and total of 4 indicators (17 detailed indicators) were selected: 'Proportion of domestic fruit/vegetable receiving 'acceptable' in the evaluation of pesticide/herbicide residues', 'Food-borne disease outbreaks', 'Food-borne legal infectious disease incidence', 'Salmonellosis incidence'. Synthetic food safety health index was derived by calculating percent difference with the data from 2010 to 2012. Results showed that when comparing the year 2010 to 2011, and 2011 to 2012, the overall food safety status improved by 10.37% and 9.87%, respectively. In addition, the contribution of indicators to the overall food safety status can be determined by looking into the individual indicators, and the synthetic index may be illustrated to enhance the ease of interpretation to the public and policy makers. In overall, food health safety indicators can be useful in many ways and therefore, attention should be drawn to conduct further studies and establish related legislations.

Change Detection for High-resolution Satellite Images Using Transfer Learning and Deep Learning Network (전이학습과 딥러닝 네트워크를 활용한 고해상도 위성영상의 변화탐지)

  • Song, Ah Ram;Choi, Jae Wan;Kim, Yong Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.199-208
    • /
    • 2019
  • As the number of available satellites increases and technology advances, image information outputs are becoming increasingly diverse and a large amount of data is accumulating. In this study, we propose a change detection method for high-resolution satellite images that uses transfer learning and a deep learning network to overcome the limit caused by insufficient training data via the use of pre-trained information. The deep learning network used in this study comprises convolutional layers to extract the spatial and spectral information and convolutional long-short term memory layers to analyze the time series information. To use the learned information, the two initial convolutional layers of the change detection network are designed to use learned values from 40,000 patches of the ISPRS (International Society for Photogrammertry and Remote Sensing) dataset as initial values. In addition, 2D (2-Dimensional) and 3D (3-dimensional) kernels were used to find the optimized structure for the high-resolution satellite images. The experimental results for the KOMPSAT-3A (KOrean Multi-Purpose SATllite-3A) satellite images show that this change detection method can effectively extract changed/unchanged pixels but is less sensitive to changes due to shadow and relief displacements. In addition, the change detection accuracy of two sites was improved by using 3D kernels. This is because a 3D kernel can consider not only the spatial information but also the spectral information. This study indicates that we can effectively detect changes in high-resolution satellite images using the constructed image information and deep learning network. In future work, a pre-trained change detection network will be applied to newly obtained images to extend the scope of the application.

ICT Company Profiling Analysis and the Mechanism for Performance Creation Depending on the Type of Government Start-up Support Program (정부창업지원 프로그램 참여에 따른 ICT 기업 프로파일링과 성과창출 메커니즘)

  • Ha, Sangjip;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.237-258
    • /
    • 2022
  • As the global market environment changes, the domestic ICT industry has a growing influence on the world economy. This industry is regarded as an important driving force in the national economy from a technological and social point of view. In particular, small and medium-sized enterprises (SMEs) in the ICT industry are regarded as essential actors of domestic economic development in terms of company diversity, technology development and job creation. However, since it is small compared to large-sized enterprises, it is difficult for SMEs to survive with a differentiated strategy in an incomplete and rapidly changing environment. Therefore, SMEs must make a lot of efforts to improve their own capabilities, and the government needs to provide the desirable help suitable for corporate internal resources so that they can continue to be competitive. This study classifies the types of ICT SMEs participating in government support programs, and analyzes the relationship between resources and performance creation of each type. The data from the "ICT Small and Medium Enterprises Survey" conducted annually by the Ministry of Science and ICT was used. In the first stage, ICT SMEs were clustered based on common factors according to their experiences with government support programs. Three clusters were meaningfully classified, and each cluster was named "active participation type," "initial support type," and "soloist type." As a second step, this study compared the characteristics of each cluster through profiling analysis for each cluster. The third step carried out in this study was to find out the mechanism of R&D performance creation for each cluster through regression analysis. Different factors affected performance creation for each cluster, and the magnitude of the influence was also different. Specifically, for "active participation type", "current manpower", "technology competitiveness", and "R&D investment in the previous year" were found to be important factors in creating R&D performance. "Initial support type" was identified as "whether or not a dedicated R&D organization exists", "R&D investment amount in the previous year", "Ratio of sales to large companies", and "Ratio of vendors supplied to large companies" contributed to the performance. Lastly, in the case of "soloist type", "current workforce" and "future recruitment plan", "technological competitiveness", "R&D investment", "large company sales ratio", and "overseas sales ratio" showed a significant relationship with the performance. This study has practical implications of showing what strategy should be established when supporting SMEs in the future according to the government's participation in the startup program and providing a guide on what kind of support should be provided.

Development of Cloud Detection Method Considering Radiometric Characteristics of Satellite Imagery (위성영상의 방사적 특성을 고려한 구름 탐지 방법 개발)

  • Won-Woo Seo;Hongki Kang;Wansang Yoon;Pyung-Chae Lim;Sooahm Rhee;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1211-1224
    • /
    • 2023
  • Clouds cause many difficult problems in observing land surface phenomena using optical satellites, such as national land observation, disaster response, and change detection. In addition, the presence of clouds affects not only the image processing stage but also the final data quality, so it is necessary to identify and remove them. Therefore, in this study, we developed a new cloud detection technique that automatically performs a series of processes to search and extract the pixels closest to the spectral pattern of clouds in satellite images, select the optimal threshold, and produce a cloud mask based on the threshold. The cloud detection technique largely consists of three steps. In the first step, the process of converting the Digital Number (DN) unit image into top-of-atmosphere reflectance units was performed. In the second step, preprocessing such as Hue-Value-Saturation (HSV) transformation, triangle thresholding, and maximum likelihood classification was applied using the top of the atmosphere reflectance image, and the threshold for generating the initial cloud mask was determined for each image. In the third post-processing step, the noise included in the initial cloud mask created was removed and the cloud boundaries and interior were improved. As experimental data for cloud detection, CAS500-1 L2G images acquired in the Korean Peninsula from April to November, which show the diversity of spatial and seasonal distribution of clouds, were used. To verify the performance of the proposed method, the results generated by a simple thresholding method were compared. As a result of the experiment, compared to the existing method, the proposed method was able to detect clouds more accurately by considering the radiometric characteristics of each image through the preprocessing process. In addition, the results showed that the influence of bright objects (panel roofs, concrete roads, sand, etc.) other than cloud objects was minimized. The proposed method showed more than 30% improved results(F1-score) compared to the existing method but showed limitations in certain images containing snow.

Recommender Systems using Structural Hole and Collaborative Filtering (구조적 공백과 협업필터링을 이용한 추천시스템)

  • Kim, Mingun;Kim, Kyoung-Jae
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.107-120
    • /
    • 2014
  • This study proposes a novel recommender system using the structural hole analysis to reflect qualitative and emotional information in recommendation process. Although collaborative filtering (CF) is known as the most popular recommendation algorithm, it has some limitations including scalability and sparsity problems. The scalability problem arises when the volume of users and items become quite large. It means that CF cannot scale up due to large computation time for finding neighbors from the user-item matrix as the number of users and items increases in real-world e-commerce sites. Sparsity is a common problem of most recommender systems due to the fact that users generally evaluate only a small portion of the whole items. In addition, the cold-start problem is the special case of the sparsity problem when users or items newly added to the system with no ratings at all. When the user's preference evaluation data is sparse, two users or items are unlikely to have common ratings, and finally, CF will predict ratings using a very limited number of similar users. Moreover, it may produces biased recommendations because similarity weights may be estimated using only a small portion of rating data. In this study, we suggest a novel limitation of the conventional CF. The limitation is that CF does not consider qualitative and emotional information about users in the recommendation process because it only utilizes user's preference scores of the user-item matrix. To address this novel limitation, this study proposes cluster-indexing CF model with the structural hole analysis for recommendations. In general, the structural hole means a location which connects two separate actors without any redundant connections in the network. The actor who occupies the structural hole can easily access to non-redundant, various and fresh information. Therefore, the actor who occupies the structural hole may be a important person in the focal network and he or she may be the representative person in the focal subgroup in the network. Thus, his or her characteristics may represent the general characteristics of the users in the focal subgroup. In this sense, we can distinguish friends and strangers of the focal user utilizing the structural hole analysis. This study uses the structural hole analysis to select structural holes in subgroups as an initial seeds for a cluster analysis. First, we gather data about users' preference ratings for items and their social network information. For gathering research data, we develop a data collection system. Then, we perform structural hole analysis and find structural holes of social network. Next, we use these structural holes as cluster centroids for the clustering algorithm. Finally, this study makes recommendations using CF within user's cluster, and compare the recommendation performances of comparative models. For implementing experiments of the proposed model, we composite the experimental results from two experiments. The first experiment is the structural hole analysis. For the first one, this study employs a software package for the analysis of social network data - UCINET version 6. The second one is for performing modified clustering, and CF using the result of the cluster analysis. We develop an experimental system using VBA (Visual Basic for Application) of Microsoft Excel 2007 for the second one. This study designs to analyzing clustering based on a novel similarity measure - Pearson correlation between user preference rating vectors for the modified clustering experiment. In addition, this study uses 'all-but-one' approach for the CF experiment. In order to validate the effectiveness of our proposed model, we apply three comparative types of CF models to the same dataset. The experimental results show that the proposed model outperforms the other comparative models. In especial, the proposed model significantly performs better than two comparative modes with the cluster analysis from the statistical significance test. However, the difference between the proposed model and the naive model does not have statistical significance.

Evaluation of Temperature and Precipitation over CORDEX-EA Phase 2 Domain using Regional Climate Model HadGEM3-RA (HadGEM3-RA 지역기후모델을 이용한 CORDEX 동아시아 2단계 지역의 기온과 강수 모의 평가)

  • Byon, Jae-Young;Kim, Tae-Jun;Kim, Jin-Uk;Kim, Do-Hyun
    • Journal of the Korean earth science society
    • /
    • v.43 no.3
    • /
    • pp.367-385
    • /
    • 2022
  • This study evaluates the temperature and precipitation results in East Asia simulated from the Hadley Centre Global Environmental Model version 3 regional climate model (HadGEM3-RA) developed by the UK Met Office. The HadGEM3-RA is conducted in the Coordinated Regional climate Downscaling Experiment-East Asia (CORDEX-EA) Phase II domain for 15 year (2000-2014). The spatial distribution of rainbands produced from the HadGEM3-RA by the summer monsoon is in good agreement with the Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of water resources (APRODITE) data over the East Asia. But, precipitation amount is overestimated in Southeast Asia and underestimated over the Korean Peninsula. In particular, the simulated summer rainfall and APRODITE data show the least correlation coefficient and the maximum value of root mean square error in South Korea. Prediction of temperature in Southeast Asia shows underestimation with a maximum error during winter season, while it appears the largest underestimation in South Korea during spring season. In order to evaluate local predictability, the time series of temperature and precipitation compared to the ASOS data of the Seoul Meteorological Station is similar to the spatial average verification results in which the summer precipitation and winter temperature underestimate. Especially, the underestimation of the rainfall increases when the amounts of precipitation increase in summer. The winter temperature tends to underestimate at low temperature, while it overestimates at high temperature. The results of the extreme climate index comparison show that heat wave is overestimated and heavy rainfall is underestimated. The HadGEM3-RA simulated with a horizontal resolution of 25 km shows limitations in the prediction of mesoscale convective system and topographic precipitation. This study indicates that improvement of initial data, horizontal resolution, and physical process are necessary to improve predictability of regional climate model.

Establishment of Test Conditions and Interlaboratory Comparison Study of Neuro-2a Assay for Saxitoxin Detection (Saxitoxin 검출을 위한 Neuro-2a 시험법 조건 확립 및 실험실 간 변동성 비교 연구)

  • Youngjin Kim;Jooree Seo;Jun Kim;Jeong-In Park;Jong Hee Kim;Hyun Park;Young-Seok Han;Youn-Jung Kim
    • Journal of Marine Life Science
    • /
    • v.9 no.1
    • /
    • pp.9-21
    • /
    • 2024
  • Paralytic shellfish poisoning (PSP) including Saxitoxin (STX) is caused by harmful algae, and poisoning occurs when the contaminated seafood is consumed. The mouse bioassay (MBA), a standard test method for detecting PSP, is being sanctioned in many countries due to its low detection limit and the animal concerns. An alternative to the MBA is the Neuro-2a cell-based assay. This study aimed to establish various test conditions for Neuro-2a assay, including cell density, culture conditions, and STX treatment conditions, to suit the domestic laboratory environment. As a result, the initial cell density was set to 40,000 cells/well and the incubation time to 24 hours. Additionally, the concentration of Ouabain and Veratridine (O/V) was set to 500/50 μM, at which most cells died. In this study, we identified eight concentrations of STX, ranging from 368 to 47,056 fg/μl, which produced an S-shaped dose-response curve when treated with O/V. Through inter-laboratory variability comparison of the Neuro-2a assay, we established five Quality Control Criteria to verify the appropriateness of the experiments and six Data Criteria (Top and Bottom OD, EC50, EC20, Hill slop, and R2 of graph) to determine the reliability of the experimental data. The Neuro-2a assay conducted under the established conditions showed an EC50 value of approximately 1,800~3,500 fg/μl. The intra- & inter-lab variability comparison results showed that the coefficients of variation (CVs) for the Quality Control and Data values ranged from 1.98% to 29.15%, confirming the reproducibility of the experiments. This study presented Quality Control Criteria and Data Criteria to assess the appropriateness of the experiments and confirmed the excellent repeatability and reproducibility of the Neuro-2a assay. To apply the Neuro-2a assay as an alternative method for detecting PSP in domestic seafood, it is essential to establish a toxin extraction method from seafood and toxin quantification methods, and perform correlation analysis with MBA and instrumental analysis methods.