• Title/Summary/Keyword: Initial Channel Estimation

Search Result 33, Processing Time 0.026 seconds

A Trellis-based Technique for Blind Channel Estimation and Equalization

  • Cao, Lei;Chen, Chang-Wen;Orlik, Philip;Zhang, Jinyun;Gu, Daqing
    • Journal of Communications and Networks
    • /
    • v.6 no.1
    • /
    • pp.19-25
    • /
    • 2004
  • In this paper, we present a trellis-based blind channel estimation and equalization technique coupling two kinds of adaptive Viterbi algorithms. First, the initial blind channel estimation is accomplished by incorporating the list parallel Viterbi algorithm with the least mean square (LMS) updating approach. In this operation, multiple trellis mappings are preserved simultaneously and ranked in terms of path metrics. Equivalently, multiple channel estimates are maintained and updated once a single symbol is received. Second, the best channel estimate from the above operation will be adopted to set up the whole trellis. The conventional adaptive Viterbi algorithm is then applied to detect the signal and further update the channel estimate alternately. A small delay is introduced for the symbol detection and the decision feedback to smooth the noise impact. An automatic switch between the above two operations is also proposed by exploiting the evolution of path metrics and the linear constraint inherent in the trellis mapping. Simulation has shown an overall excellent performance of the proposed scheme in terms of mean square error (MSE) for channel estimation, robustness to the initial channel guess, computational complexity, and channel equalization.

Virtual Subcarrier-Based Adaptive Channel Estimation Scheme of IEEE 802.11p-Based WAVE Communication System

  • Song, Mihwa;Kang, Seong-In;Lee, Won-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.2
    • /
    • pp.88-93
    • /
    • 2020
  • The IEEE 802.11p-based wireless access in vehicular environments (WAVE) [1] communication is a method used exclusively for wireless communication on the road. This technique enables information sharing not only among moving vehicles but also between vehicles and infrastructure [2]. As part of WAVE communication, data is transmitted to and from vehicles in motion; in this case, it is difficult to determine the channel accurately in an outdoor environment owing to the Doppler shift [3]. This paper proposes a new channel estimation scheme for enhancing the reception performance of the IEEE 802.11p-based WAVE system. The proposed technique obtains the initial channel value by estimating the least square in the time domain by inserting a pilot signal for channel estimation into the IEEE 802.11p virtual subcarrier. Subsequently, a least mean square algorithm is applied to the initial channel value to update the estimated channel value. The simulation results obtained using the proposed channel estimation technique confirm its remarkable efficiency.

A Initial Channel Estimation Method Based on Extensive Preamble Utilization in MB-OFDM UWB System (프리엠블 확장 사용 기반 MB-OFDM UWB용 채널 추정 방식)

  • Jeong, Jin-Doo;Jin, Yong-Sun;Chong, Jong-Wha
    • 전자공학회논문지 IE
    • /
    • v.48 no.1
    • /
    • pp.30-35
    • /
    • 2011
  • In this paper, we propose a method to improve the performance of initial channel estimation (CE) for the multiband-OFDM (MB-OFDM) UWB. The performance of the initial CE can be generally improved as increasing the number of the used preamble symbols. The MB-OFDM specification presents two CE symbols per band in preamble format. The performance of CE estimation with two CE symbols may be satisfied in relatively high sensitivity -77.5 and -72.5 dBm for 200 Mbps and 480 Mbps data rate, respectively, but can not be enough in the degraded 55 Mbps and 110 Mbps sensitivities such as -83.5 and -80.5 dBm, respectively. A method proposed in this paper achieves the performance improvement by extending CE estimation region to packet synchronization (PS) symbols and frame synchronization (FS) symbols including two CE symbols. This can improve the CE performance in the degraded SNR and increase the link-margin by reducing the error rate in physical-layer header. The link-margin improvement obtained by the proposed CE preamble can induce the decrease of error-rate in physical-layer header and increase of communication throughput. Simulation results for the proposed initial method show that the performance is improved by about 0.7 dB at 10-4 bit-error-rate using '4' symbols than initial method using only two CE symbols.

Time-Delay Estimation in the Multi-Path Channel based on Maximum Likelihood Criterion

  • Xie, Shengdong;Hu, Aiqun;Huang, Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1063-1075
    • /
    • 2012
  • To locate an object accurately in the wireless sensor networks, the distance measure based on time-delay plays an important role. In this paper, we propose a maximum likelihood (ML) time-delay estimation algorithm in multi-path wireless propagation channel. We get the joint probability density function after sampling the frequency domain response of the multi-path channel, which could be obtained by the vector network analyzer. Based on the ML criterion, the time-delay values of different paths are estimated. Considering the ML function is non-linear with respect to the multi-path time-delays, we first obtain the coarse values of different paths using the subspace fitting algorithm, then take them as an initial point, and finally get the ML time-delay estimation values with the pattern searching optimization method. The simulation results show that although the ML estimation variance could not reach the Cramer-Rao lower bounds (CRLB), its performance is superior to that of subspace fitting algorithm, and could be seen as a fine algorithm.

Pilot Subcarrier Based Channel Estimation Scheme in IEEE 802.11p Systems (IEEE 802.11p에서 파일럿 부반송파를 이용한 채널추정 기법)

  • Ren, Yongzhe;Park, Dong Chan;Kim, Suk Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.791-798
    • /
    • 2015
  • It has been grown interests of the convergence technologies about communication systems and vehicular industry. Vehicular communications enable a number of infotainment applications to serve cars under high mobility environments. To achieve this goal, a robust and accurate channel estimation scheme is of great importance. This paper proposes an enhanced Decision-Directed channel estimation scheme called PTAU(Pilot Tone Aided Update) for IEEE 802.11p in vehicular communication environment. Existing approaches which use subsequent data symbols to estimate channel response in time domain will lead to the error propagation. In this paper, we use the pilot subcarriers to get initial channel response, then utilize the correlation characteristics to update channel response in frequency domain. Finally, Analysis and simulation results reveal that the proposed scheme outperforms in bit error rate(BER), significantly improve the performance of the estimation.

A Multiple-Symbol Interval Estimation Algorithm for Precision Improvement of Initial Carrier-Frequency Synchronization in Multiband-OFDM UWB System (MB-OFDM UWB 시스템에서 초기 반송파 주파수 동기의 정확도 향상을 위한 다중 심볼 간격 추정 알고리즘)

  • Jin, Yong-Sun;Park, Kye-Wan
    • 전자공학회논문지 IE
    • /
    • v.47 no.3
    • /
    • pp.35-40
    • /
    • 2010
  • In this paper, we propose an algorithm to improve the precision of initial carrier-frequency offset estimation for multiband-OFDM (MB-OFDM) UWB system which is considering the quantization-noise effect. In the general OFDM system, the two adjacent and repeated preamble symbols are used for the initial carrier-frequency synchronization while the performance of the frequency-offset estimation is bounded by quantization effect generated from analog-to-digital conversion at the receiver. This paper proposes a method in which one-symbol interval between two adjacent preamble symbols for the initial frequency synchronization is extended to multiple-symbol interval between non-adjacent symbols in an extent that phase ambiguity does not occur. In this paper, we also present '6' as optimal multiple symbol interval for the MB-OFDM system with 30 preamble symbols on 3-band hopping and with 4-bit A/D conversion at the receiver. Under the channel environments for the MB-OFDM UWB system, the simulation results show that the proposed estimation algorithm can achieve the initial estimation in offset precision less than 5 ppm.

Residual Synchronization Error Elimination in OFDM Baseband Receivers

  • Hu, Xingbo;Huang, Yumei;Hong, Zhiliang
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.596-606
    • /
    • 2007
  • It is well known that an OFDM receiver is vulnerable to synchronization errors. Despite fine estimations used in the initial acquisition, there are still residual synchronization errors. Though these errors are very small, they severely degrade the bit error rate (BER) performance. In this paper, we propose a residual error elimination scheme for the digital OFDM baseband receiver aiming to improve the overall BER performance. Three improvements on existing schemes are made: a pilot-aided recursive algorithm for joint estimation of the residual carrier frequency and sampling time offsets; a delay-based timing error correction technique, which smoothly adjusts the incoming data stream without resampling disturbance; and a decision-directed channel gain update algorithm based on recursive least-squares criterion, which offers faster convergence and smaller error than the least-mean-squares algorithms. Simulation results show that the proposed scheme works well in the multipath channel, and its performance is close to that of an OFDM system with perfect synchronization parameters.

  • PDF

Channel-Adaptive Beamforming Method for OFDMA Systems in frequency-Selective Channels (주파수 선택적 채널에서 OFDMA 시스템을 위한 적응 빔포밍 방법)

  • Han Seung Hee;Lee Kyu In;Ahn Jae Young;Cho Yong Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10C
    • /
    • pp.976-982
    • /
    • 2005
  • In this paper, a channel-adaptive beamforming method is proposed for OFDMA (Orthogonal Frequency Division Multilexing Access) systems with smart antenna, in which the size of a cluster is determined adaptively depending on the frequency selectivity of the channel. The proposed method consists of 4 steps: initial channel estimation, refinement of channel estimates, region-splitting, and computation of weight vector for each region. In the proposed method, the size of a cluster for resource unit is determined adaptively according to a region-splitting criterion. It is shown by simulation that the proposed method shows good performances in both frequency-flat and frequency-selective channels.

A Simple Enhancement of Coherent Detection for Initial Frame Synchronization in W-CDMA Systems (W-CDMA 시스템의 초기 프레임 동기 획득을 위한 Coherent 검출 방식의 성능 개선)

  • Choi, Won-Eung;Joo, Jung-Suk
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.10
    • /
    • pp.43-48
    • /
    • 2010
  • In general, in order to reduce an initial cell searching time, W-CDMA systems adopt a three-step cell search scheme: slot synchronization, frame synchronization, and primary scrambling code identification. We consider the second step (frame synchronization), in which a coherent detection using P-SCH (primary synchronization channel) is possible. In this paper, we propose a new coherent detection scheme, where a first order recursive filter is used to enhance channel estimation performance. Computer simulation results indicate that the detection performance of the proposed scheme can be robust over large range of frequency offset.

A Novel Routing Algorithm Based on Load Balancing for Multi-Channel Wireless Mesh Networks

  • Liu, Chun-Xiao;Chang, Gui-Ran;Jia, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.651-669
    • /
    • 2013
  • In this paper, we study a novel routing algorithm based on load balancing for multi-channel wireless mesh networks. In order to increase the network capacity and reduce the interference of transmission streams and the communication delay, on the basis of weighted cumulative expected transmission time (WCETT) routing metric this paper proposes an improved routing metric based on load balancing and channel interference (LBI_WCETT), which considers the channel interference, channel diversity, link load and the latency brought by channel switching. Meanwhile, in order to utilize the multi-channel strategy efficiently in wireless mesh networks, a new channel allocation algorithm is proposed. This channel allocation algorithm utilizes the conflict graph model and considers the initial link load estimation and the potential interference of the link to assign a channel for each link in the wireless mesh network. It also utilizes the channel utilization percentage of the virtual link in its interference range as the channel selection standard. Simulation results show that the LBI_WCETT routing metric can help increase the network capacity effectively, reduce the average end to end delay, and improve the network performance.