• Title/Summary/Keyword: Information input algorithm

Search Result 2,444, Processing Time 0.035 seconds

The ConvexHull using Outline Extration Algorithm in Gray Scale Image (이진 영상에서 ConvexHull을 이용한 윤곽선 추출 알고리즘)

  • Cho, Young-bok;Kim, U-ju;Woo, Sung-hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.162-165
    • /
    • 2017
  • The proposed paper extracts the region of interest from the x-lay input image and compares it with the reference image. The x-ray image has the same shape, but the size, direction and position of the object are photographed differently. In this way, we measure the erection difference of darkness and darkness using the similarity measurement method for the same object. Distance measurement also calculates the distance between two points with vector coordinates (x, y, z) of x-lay data. Experimental results show that the proposed method improves the accuracy of ROI extraction and the reference image matching time is more efficient than the conventional method.

  • PDF

An Implementation of ISP for CMOS Image Sensor (CMOS 카메라 이미지 센서용 ISP 구현)

  • Sonh, Seung-Il;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.555-562
    • /
    • 2007
  • In order to display Bayer input stream received from CMOS image sensor to the display device, image signal processing must be performed. That is, the hardware performing the image signal processing for Bayer data is called ISP(Image Signal Processor). We can see real image through ISP processing. ISP executes functionalities for gamma correction, interpolation, color space conversion, image effect, image scale, AWB, AE and AF. In this paper, we obtained the optimum algorithm through software verification of ISP module for CMOS camera image sensor and described using VHDL and verified in ModelSim6.0a simulator. Also we downloaded into Xilinx XCV-1000e for the designed ISP module and completed the board level verification using PCI interface.

Realization for Moving Object Sensing and Path Tracking System using Stereo Line CCDs (스테레오 라인 CCD를 이용한 이동객체감지 및 경로추적 시스템 구현)

  • Ryu, Kwang-Ryol;Kim, Young-Bin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.2050-2056
    • /
    • 2008
  • A realization for moving object sensing and tracking system in two dimensional plane using stereo line CCDs and lighting source is presented in this paper. The system is realized that instead of processing camera images directly, two line CCD sensor and input line image is used to measure two dimensional distance by comparing the brightness on line CCDs. The algorithms are used the moving object sensing, path tracking and coordinate converting method. To ensure the effective detection of moving path, a detection algorithm to evaluate the reliability of each measured distance is developed. The realized system results are that the performance of moving object recognizing shows 5mm resolution, and enables to track a moving path of object per looms period.

Route Optimization Algorithm Based on Game Theory for Tourism Routes at Pseudo-Imperial Palace

  • Liu, Guangjie;Zhu, Jinlong;Sun, Qiucheng;Hu, Jiaze;Yu, Hao
    • Journal of Information Processing Systems
    • /
    • v.17 no.5
    • /
    • pp.879-891
    • /
    • 2021
  • With improvements in living conditions, an increasing number of people are choosing to spend their time traveling. Comfortable tour routes are affected by the season, time, and other local factors. In this paper, the influencing factors and principles of scenic spots are analyzed, a model used to find the available routes is built, and a multi-route choice model based on a game theory utilizing a path recommendation weight is developed. A Monte Carlo analysis of a tourist route subjected to fixed access point conditions is applied to account for uncertainties such as the season, start time, end time, stay time, number of scenic spots, destination, and start point. We use the Dijkstra method to obtain multiple path plans and calculate the path evaluation score using the Monte Carlo method. Finally, according to the user preference in the input path, game theory generates path ordering for user choice. The proposed approach achieves a state-of-the-art performance at the pseudo-imperial palace. Compared with other methods, the proposed method can avoid congestion and reduce the time cost.

Multi-Style License Plate Recognition System using K-Nearest Neighbors

  • Park, Soungsill;Yoon, Hyoseok;Park, Seho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2509-2528
    • /
    • 2019
  • There are various styles of license plates for different countries and use cases that require style-specific methods. In this paper, we propose and illustrate a multi-style license plate recognition system. The proposed system performs a series of processes for license plate candidates detection, structure classification, character segmentation and character recognition, respectively. Specifically, we introduce a license plate structure classification process to identify its style that precedes character segmentation and recognition processes. We use a K-Nearest Neighbors algorithm with pre-training steps to recognize numbers and characters on multi-style license plates. To show feasibility of our multi-style license plate recognition system, we evaluate our system for multi-style license plates covering single line, double line, different backgrounds and character colors on Korean and the U.S. license plates. For the evaluation of Korean license plate recognition, we used a 50 minutes long input video that contains 138 vehicles of 6 different license plate styles, where each frame of the video is processed through a series of license plate recognition processes. From two experiments results, we show that various LP styles can be recognized under 50 ms processing time and with over 99% accuracy, and can be extended through additional learning and training steps.

Effective Separation Method for Single-Channel Time-Frequency Overlapped Signals Based on Improved Empirical Wavelet Transform

  • Liu, Zhipeng;Li, Lichun;Li, Huiqi;Liu, Chang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2434-2453
    • /
    • 2019
  • To improve the separation performance of time-frequency overlapped radar and communication signals from a single channel, this paper proposes an effective separation method based on an improved empirical wavelet transform (EWT) that introduces a fast boundary detection mechanism. The fast boundary detection mechanism can be regarded as a process of searching, difference optimization, and continuity detection of the important local minima in the Fourier spectrum that enables determination of the sub-band boundary and thus allows multiple signal components to be distinguished. An orthogonal empirical wavelet filter bank that was designed for signal adaptive reconstruction is then used to separate the input time-frequency overlapped signals. The experimental results show that if two source components are completely overlapped within the time domain and the spectrum overlap ratio is less than 60%, the average separation performance is improved by approximately 32.3% when compared with the classic EWT; the proposed method also improves the suitability for multiple frequency shift keying (MFSK) and reduces the algorithm complexity.

Applying Topic Modeling and Similarity for Predicting Bug Severity in Cross Projects

  • Yang, Geunseok;Min, Kyeongsic;Lee, Jung-Won;Lee, Byungjeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1583-1598
    • /
    • 2019
  • Recently, software has increased in complexity and been applied in various industrial fields. As a result, the presence of software bugs cannot be avoided. Various bug severity prediction methodologies have been proposed, but their performance needs to be further improved. In this study, we propose a novel technique for bug severity prediction in cross projects such as Eclipse, Mozilla, WireShark, and Xamarin by using topic modeling and similarity (i.e., KL-divergence). First, we construct topic models from bug repositories in cross projects using Latent Dirichlet Allocation (LDA). Then, we find topics in each project that contain the most numerous similar bug reports by using a new bug report. Next, we extract the bug reports belonging to the selected topics and input them to a Naïve Bayes Multinomial (NBM) algorithm. Finally, we predict the bug severity in the new bug report. In order to evaluate the performance of our approach and to verify the difference between cross projects and single project, we compare it with the Naïve Bayes Multinomial approach; the Lamkanfi methodology, which is a well-known bug severity prediction approach; and an emotional similarity-based bug severity prediction approach. Our approach exhibits a better performance than the compared methods.

A Method for Deciding Permission of the ATM Using Face Detection (사용자 얼굴 검출을 이용한 ATM 사용 허가 판별 방법)

  • Lee, Jung-hwa;Kim, Tae-hyung;Cha, Eui-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.403-406
    • /
    • 2009
  • In this paper, we propose a method for deciding permission from the ATM(Automated Teller Machine) using face detection. First, we extract skin areas and make candidate face images from an input image, and then detect a face using Adaboost(Adaptive Boosting) algorithm. Next, proposed method executes a template matching for making a decision on whether to wear accessories like sunglasses or a mask in detected face image. Finally, this method decides whether to permit ATM service using this result. Experimental results show that proposed method performed well at indoors ATM environment for detecting whether to wear accessories.

  • PDF

Optimizations for Mobile MIMO Relay Molecular Communication via Diffusion with Network Coding

  • Cheng, Zhen;Sun, Jie;Yan, Jun;Tu, Yuchun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1373-1391
    • /
    • 2022
  • We investigate mobile multiple-input multiple-output (MIMO) molecular communication via diffusion (MCvD) system which is consisted of two source nodes, two destination nodes and one relay node in the mobile three-dimensional channel. First, the combinations of decode-and-forward (DF) relaying protocol and network coding (NC) scheme are implemented at relay node. The adaptive thresholds at relay node and destination nodes can be obtained by maximum a posteriori (MAP) probability detection method. Then the mathematical expressions of the average bit error probability (BEP) of this mobile MIMO MCvD system based on DF and NC scheme are derived. Furthermore, in order to minimize the average BEP, we establish the optimization problem with optimization variables which include the ratio of the number of emitted molecules at two source nodes and the initial position of relay node. We put forward an iterative scheme based on block coordinate descent algorithm which can be used to solve the optimization problem and get optimal values of the optimization variables simultaneously. Finally, the numerical results reveal that the proposed iterative method has good convergence behavior. The average BEP performance of this system can be improved by performing the joint optimizations.

Combining Hough Transform and Fuzzy Unsupervised Learning Strategy in Automatic Segmentation of Large Bowel Obstruction Area from Erect Abdominal Radiographs

  • Kwang Baek Kim;Doo Heon Song;Hyun Jun Park
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.4
    • /
    • pp.322-328
    • /
    • 2023
  • The number of senior citizens with large bowel obstruction is steadily growing in Korea. Plain radiography was used to examine the severity and treatment of this phenomenon. To avoid examiner subjectivity in radiography readings, we propose an automatic segmentation method to identify fluid-filled areas indicative of large bowel obstruction. Our proposed method applies the Hough transform to locate suspicious areas successfully and applies the possibilistic fuzzy c-means unsupervised learning algorithm to form the target area in a noisy environment. In an experiment with 104 real-world large-bowel obstruction radiographs, the proposed method successfully identified all suspicious areas in 73 of 104 input images and partially identified the target area in another 21 images. Additionally, the proposed method shows a true-positive rate of over 91% and false-positive rate of less than 3% for pixel-level area formation. These performance evaluation statistics are significantly better than those of the possibilistic c-means and fuzzy c-means-based strategies; thus, this hybrid strategy of automatic segmentation of large bowel suspicious areas is successful and might be feasible for real-world use.