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Abstract 
 

To improve the separation performance of time-frequency overlapped radar and 
communication signals from a single channel, this paper proposes an effective separation 
method based on an improved empirical wavelet transform (EWT) that introduces a fast 
boundary detection mechanism. The fast boundary detection mechanism can be regarded as a 
process of searching, difference optimization, and continuity detection of the important local 
minima in the Fourier spectrum that enables determination of the sub-band boundary and thus 
allows multiple signal components to be distinguished. An orthogonal empirical wavelet filter 
bank that was designed for signal adaptive reconstruction is then used to separate the input 
time-frequency overlapped signals. The experimental results show that if two source 
components are completely overlapped within the time domain and the spectrum overlap ratio 
is less than 60%, the average separation performance is improved by approximately 32.3% 
when compared with the classic EWT; the proposed method also improves the suitability for 
multiple frequency shift keying (MFSK) and reduces the algorithm complexity. 
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1. Introduction 

In modern electronic warfare, multiple input multiple output (MIMO) radar or 
communication system has become an important tool for electronic reconnaissance and 
intelligence transmission. As a common MIMO radar or communication signal, different types 
of modulation modes usually have a serious overlap of both time and frequency in the 
receivers, and the frequency bands of radar and communication system are generally covered 
by each other, so it cannot be directly used in the latter signal classification and recognition 
tasks [1-2]. 

In non-cooperative reception scenarios, the reconnaissance system often receives hybrid 
time-frequency overlapped signals, so blind source separation (BSS) is applied to separate the 
sources from the observations without a priori knowledge on hybrid procedure and the sources 
[3]. In practical applications, the number of source signals usually exceeds the number of 
sensors, and such a scenario constitutes underdetermined blind source separation (UBSS) [4]. 
The most difficult case in UBSS is that there is only one sensors, and it is called single-channel 
blind source separation (SBSS) [5]. When less information is available, SBSS has no definite 
mathematical solution; but if enough differences exist between each of the sources, the 
problem can be solved [6-10]. 

Empirical mode decomposition (EMD) is used to decompose a signal as a finite sum of 
intrinsic mode functions (IMFs) and has gained considerable interest for signal analysis 
applications over the last decade [11-13]. EMD can perform well in the separation of 
stationary or nonstationary hybrid signals which are completely overlapped within the time 
domain by using its adaptivity on different time scales, but it is only effective for high sparsity 
of the source signals in the frequency domain [14-16]. For improving the separation 
performance for the mixed sources having more serious overlap of frequency, Gilles proposed 
the empirical wavelet transform (EWT) to extract more information from the frequency 
domain with reference to EMD [17-18]. EWT usually consists of two steps: segment the 
Fourier spectrum of hybrid signal into multiple sub band first and then reconstruct the sources. 
Based on the scale space algorithm, the input hybrid signals were divided into multiple 
frequency features by determining valid Fourier boundaries, and an orthogonal wavelet filter 
bank was then designed for signal adaptive construction. However, this method cannot divide 
MFSK signals correctly and the algorithm’s complexity increases sharply with increasing 
numbers of the sources [19]. 

Therefore, with the aim of improving the expansibility of the classic EWT, this paper 
proposes an effective method based on an improved EWT that introduces a new adaptive 
spectrum division mechanism to improve the separation performance for time-frequency 
overlapped signals, and particularly for MFSK. In addition, the proposed method also 
overcomes the problem that causes the algorithm’s complexity to rise so sharply. 

The rest of this paper is organized as follows. In Sect. 2, we propose three time-frequency 
overlapped signal models and the basic theory of analysis in the separation problem. Our 
method and the classic EWT are described in Sect. 3. Section 4 shows the experimental results 
and analysis. Finally, some conclusions are given in Sect. 5. 
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2. Related Work 
First, the instantaneous linear hybrid SBSS mathematical model with noise, can be represented 
as: 
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where ( )f t  represents the observed signal, 1 nR ×∈A  is the observation matrix, ( )ts  
represents n source signals, and ( )v t  is the additive noise. 

Seven typical radar and communication signals have been selected as source signal 
components for study. We chose two types of communication signals (quaternary frequency 
shift keying (4FSK) and binary phase shift keying (BPSK)) and five types of radar signals 
(Frank, Barker, even quadratic frequency modulation (EQFM), linear frequency modulation 
(LFM), and sinusoidal frequency modulation (SFM) signals). 

To enable visual representation of the time-frequency characteristics, the Choi-Williams 
distribution, which is a Cohen class distribution with high time-frequency resolution and 
fewer cross terms than traditional time-frequency (T-F) distributions [20-21], is used here to 
analyze the selected signals. Figure 1 shows the time-frequency distribution images for the 
chosen signal types, where the horizontal axis represents the time and the vertical axis 
represents the frequency. The images in Fig. 1 show that large differences exist between the 
time-frequency distributions of the selected signal types. Therefore, based on their pattern 
features, the seven signal types can be divided into two distinct classes: stretch-class 
distributions and compact-class distributions. The LFM, SFM, and EQFM distributions are 
assumed to be specific curves, represented by stretched shapes, and their frequency 
bandwidths are relatively wide when compared with those of the other signals; thus they are 
stretch-class distributions. The distributions of the 4FSK, BPSK, Frank, and Barker signals are 
more concentrated and have much narrower frequency bandwidths, meaning that they are 
compact-class distributions. For these stretch and compact-class distribution signals, three 
models are established for discussion in this paper: the stretch overlapping model, the 
stretch-compact overlapping model, and the compact overlapping model. 

         
(a) LFM           (b) SFM          (c) EQFM          (d) 4FSK         (e) BPSK   

    
(f) FRANK         (g) Barker  

Fig. 1. In this figure, (a)–(g) are different signal types, which including Linear frequency 
modulation(LFM), Sinusoidal frequency modulation (SFM), Even quadratic frequency modulation 
(EQFM), quaternary frequency shift keying (4FSK), Binary phase shift keying (BPSK), Frank and 

Barker sequentially. There are significant differences among the Choi–Williams time-frequency 
distribution (CWD) images. The controllable factor σ = 1 also be used and SNR= 5dB. 
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In the above models, the necessary assumptions need to be mentioned. On one hand, any 

two sources of the hybrid signal overlap completely in the time domain. On the other hand, for 
simplification, it is assumed that the hybrid signal for studying in this paper contains only two 
sources. Therefore, the overlapping behavior in the frequency domain must be analyzed. The 
spectrum overlap ratio of the different sources is defined as:  
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where 

isBdoverlap  represents the overlap bandwidth of source signal is  that overlaps with 
the other sources in the Fourier spectrum, and 

isBd  is the entire bandwidth corresponding to 

is . 

 2.1 Stretch and stretch-compact overlapping models 
The stretch overlapping model contains two different types of stretch-class distribution. As 
shown in Fig. 2a, because the time-frequency patterns of the sources are shown as curves, the 
overlap in the image is indicated by multiple intersection points. In the stretch-compact 
overlapping model, because of the time-frequency distribution and the more serious nature of 
the overlapping, more intersection points are generated, as shown in Fig. 2b.  
 

      
(a)                                    (b)  

Fig. 2. (a) The time-frequency sample images of the stretch overlapping model (LFM+EQFM); (b) The 
time-frequency sample images of stretch-compact overlapping model (EQFM+BPSK). 

 
In these two models, if the spectrum overlap ratio of the source with the narrower bandwidth 

is 100%, it is fairly easy to recognize the signals from the time-frequency images visually.  
 

2.2 Compact overlapping model 
In the compact overlapping model, compact-class distributions have different overlap of 
frequency. Here, the following five spectrum overlap ratios are set for analysis: 20%, 40%, 
60%, 80% and 100%. Fig. 3 shows the results for Frank and 4FSK signals of the same 
bandwidth for these different ratios. 
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(a) 100%                       (b) 80%                        (c) 60% 

      
(d) 40%                        (e) 20%   

Fig. 3. The time-frequency sample images of the compact overlapping model at different spectrum 
overlap ratio (FRANK+4FSK, (a) 100%; (b) 80%; (c) 60%; (d) 40%; (e) 20%). 

 
As the spectrum overlap ratio increases, the recognition of each source also becomes more 

difficult from the vison, and the separation difficulty may be greatly enhanced. When the ratio 
exceeds 60%, it basically becomes impossible to distinguish the main features of each source 
from the time-frequency image. 

With regard to the multi-component time-frequency overlapped signals that may occur in an 
actual scene, these signals can be simplified by being decomposed into the three 
time-frequency overlapped signal models, but these models are only applicable under specific 
and limited conditions, to ensure good discrimination of each source in the Fourier spectrum, 
which can be summarized as follows: 
Constraint 1. Different frequency bands or modulation modes of adjacent overlapped sources 
is needed, to ensure that the hybrid signals have good separability.  
Constraint 2. A single overlap area can contain two sources at most, which need to meet the 
constraint 1, but one source signal can contain multiple overlapping areas (no more than two), 
as shown in Fig. 4.  

When the two constraints above are satisfied simultaneously, the multi-component 
time-frequency overlapped signals can then be simplified for analysis using the proposed 
models. 

 

Mixed area1

Mixed area2

 
Fig. 4. The sample images of multi-component time-frequency overlapped signal. 
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3. Improved EWT 

3.1 Classic EWT 
The classic EWT performs division on the Fourier spectrum by using the scale space algorithm, 
and then constructs a set of self-adaptive band-pass filters to extract the different signal 
amplitude-frequency (AF) components from each sub band to achieve separation of the 
sources [18]. The adaptability of the EWT is mainly reflected in the fact that the parameters of 
each filter are determined depending upon different sub bands. In the classic EWT, the scale 
space algorithm is used to determine valid Fourier boundaries by searching and filtering the 
local maxima in the Fourier spectrum, and the spectrum waveform is quite demanding. The 
scale space algorithm adopt a time-varying Gaussian kernel to observes both the whole and 
parts of the spectrum using multiple space scales to obtain one or more “important maxima”, 
where most of these “important maxima” are significantly larger than the other local maxima 
that exist around them and are thus more representative of the spectrum. Let { } 1

m
k k

M
=

 

represents the set of m detected “important maxima”. Without any loss of generality, we 
assumed that this set is sorted in descending order 1 2( )mM M M≥ ≥  and normalized in [0; 
1]. To keep the “important maxima” which are greater than some amount of the difference 
between the bigger maximum and the smaller maximum, we set the 
threshold 1( )m mM M Mβ+ − , where β  is applied for adjusting the amplitude, generally 
β =0.3 or 0.4 can be used to achieve a good separation effect [18]. Next, we define the center 
between the corresponding frequencies of the adjacent kM as the boundary of each sub band, as 
shown in Fig. 5a. However, this division approach can easily cause severe damage to the 
spectral integrity of partial sources. This means that the signal may be divided into multiple 
sub bands, as shown in Fig. 5b, and this operation also affects the detection of the weaker 
signals. 
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(b) 
Fig. 5. Boundary detection in classic EWT. (a). Sub-band boundary determination; (b). The division of 

the spectrum of 4FSK. 
 

3.2 Improved EWT 
The core idea of the improved EWT is to use a fast boundary detection mechanism for the 
Fourier spectrum segmentation procedure. Since the local maxima generally represent the 
main spectrum features, it is common to lead the neglect of some important but weak signal 
features, so the local minima in the spectrum are more suitable for detection of the edges of the 
spectral waveforms of the different sources. The fast boundary detection mechanism mainly 
uses searching, difference optimization, and continuity detection processes to filter out the 
important local minima and then determines the sub-band boundaries. The purpose of the new 
division approach is to produce a stable and efficient algorithm for detection of the sub-band 
boundaries and then enhance the separation performance for the time-frequency overlapped 
signals while reducing the algorithm’s complexity. Using time-domain discrete signals as an 
example, the detailed implementation steps for the improved EWT are described as follows: 
Step 1: Calculate the Fourier spectrum ( )F ω  of the input time-frequency overlapped signal 

( )f n , and the sampling frequency is Fs . 
Step 2: Consider a normalized Fourier axis which has a 2π  periodicity, in order to respect the 
Shannon criteria, we restrict the discussion in [0, ]π . Let us start by assuming that the Fourier 
spectrum [0, ]π  is divided into N contiguous sub band. Each sub band is expressed as 

1[ , ]i i iω ω +Λ = , and it is easy to see that 
1

[0, ]N
ii

π
=
Λ =



, where 1 0ω =  and 1Nω π+ = . The 
remaining N-1 boundaries are determined by the fast boundary detection mechanism (we will 
discuss the details of this detection mechanism and how it work later), denoted as 2{ }N

i iω = .  
Step 3:  To reconstruct the corresponding sources of each sub band, we construct a set of band 
pass filters on each iΛ  by utilizing the idea used in the construction of both Littlewood-Paley 
and Meyer’s wavelets [22]. The empirical scaling function and the empirical wavelets are 
defined as ˆ ( )nφ ω  and ˆ ( )nψ ω , expressed as (3) and (4), respectively.   
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where the function ( )xβ  is an arbitrary ([0,1])kC  function, and the most used in [22] is 
expressed as (5). Concerning the choice of γ , we set the value for a tight frame used in [18] as 
(6). 
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Step 4: From the previous steps, we know how to build a suitable frame set of empirical 
wavelets. Now we can calculate EWT, in the same way as for the classic wavelet transform. 
The detail coefficients and approximation coefficients are defined ( , )fW n tε  and (0, )fW tε  
respectively, expressed as (7) and (8) 
 
                        1 ˆ ˆ( , ) , ( ) ( ) ( ( ) ( ))f n n nW n t f f t d F fε ψ τ ψ τ τ ω ψ ω−= = − =∫                               (7) 

                         1
1 1 1

ˆ ˆ(0, ) , ( ) ( ) ( ( ) ( ))fW t f f f t d F fε τ φ τ τ ω φ ω−= = − =∫                                    (8) 
 
where f  represents the hybrid signal, nψ  is the complex conjugation of nψ  , ˆ ( )f ω  , 

ˆ ( )nψ ω  and 1̂( )φ ω  are the Fourier transform of ( )f t  , ( )n tψ  and 1( )tφ  respectively, defined 
by (3) and (4). 
Step 5: The reconstruction of the hybrid signal ( )f t  is represented as (9). 
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where ˆ (0, )fW ε ω  and ˆ ( , )fW nε ω  are the Fourier transform of (0, )fW tε  and ( , )fW n tε  

defined by (7) and (8), respectively. Since ( )f t  can also be expressed as: 
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where ( )kf t  is obtained by the decomposition of ( )f t , it means that the source signals are 
obtained after the division and reconstruction, defined as (11). 
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3.3 Fast Boundary Detection Mechanism 
We propose a simple and effective method to determine the boundaries between the different 
sources. First, we search for all local minima within the magnitude of the Fourier spectrum of 
the input hybrid signal ( )f t , and let 1{min }m

k kMin ==  denote the set of m detected minima 

(where 1{min }m
k k=  are arranged in ascending order of the corresponding frequency points). In 

general, we think that the mink  with smaller values mostly appear between the waveforms of 
adjacent signals or within the noise spectrum, while the mink  with larger values usually 
appear inside the waveforms of the signals. For the latter continuity detection, we define a 
“local minimum group” comprising consecutive mink , and the number of mink  in each local 
minimum group is set as K, where K is required to be much smaller than the number of all 
minima m, usually, 0.1K m≤ . As shown in Fig. 6, regardless of whether an overlap area 
exists between the sources or not (we use 4FSK+Frank under different spectrum overlap ratios, 
0 and 40%), the distribution of the local minimum group located within the noise spectrum is 
smooth, while slight fluctuations are generated between the adjacent signals. Inside the signals, 
however, much larger fluctuations are existed. Here the curve LMcurve is used to indicate the 
distribution of  1{min }m

k k=  uniformly. 
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(a) 

 
(b) 

Fig. 6. The distribution of local minimum in the Fourier spectrum of input hybrid signal 
(4FSK+FRANK). (a) 

1 2
0s sη η= = ; (b) 

1 2
40%s sη η= = . 

 
To provide a better understanding of the fluctuations, an analysis of the fluctuations in the 

differences is performed. The difference between the adjacent points is given by: 
 

             1min min    1, 2, 1k k kd k m+= − = −                (12) 
 

where kd  represents the difference, and it can be sorted into three types depending on the 

positions in the spectrum, which are n
kd  within the noise spectrum, _s border

kd  existing between 

adjacent signals, and _s in
kd  existing inside the signals components, respectively. 

Then, difference optimization is performed to enable easier filtering. Based on the 
volatilities of the local minimum groups, we usually consider that _ _s in s border n

k k kd d d> > . 

Here we need only consider _s border
kd  and n

kd  for division. To enable effective normalization 

of 1
1{ }m

k kd −
= , the difference detection threshold is set to be  
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where α  denotes the difference factor that is used to adjust the detection sensitivity. The value 
of α will be analyzed in the experimental work. The regulatory rule is given by: 
 

    10 k
k

k

d
std

d else
ε≤

= 


                (14) 

 
where kstd  denotes the normalized value of kd . Because of the fluctuations among the 

different types of differences, most of n
kd  and a small number of _s border

kd are set to zero value; 

this leads to the partial fluctuations in _s border
kd being reduced or disappearing, while there are 

almost no fluctuations in the n
kd ; an example for α =5 for a hybrid signal (4FSK+Frank) with 

1 2
40%s sη η= =  is shown in Fig. 7. 

 

 
Fig. 7. Comparison between the difference before and after optimization 

 
Finally, the counting and continuity detection of the zero values are performed on the local 

minimum groups after the difference optimization process. The number of zero values 
represents the degree of the fluctuations that occur inside the local minimum groups. Larger 
numbers of zero values correspond to slighter fluctuations, and this regulation can be used to 
determine whether obvious fluctuations exist within the waveform; this is also the basis used 
for division. Because energy fluctuations exist between the different frequency bands in 
MFSK signals, and multiple valley values are generated within the waveforms of MFSK, then 
these signals can easily be divided into multiple components, which results in destruction of 
the spectral integrity. In order to address this problem, continuity detection of the zero values 
works. We define a valid local minimum group with good continuity as a group in which 2ε  
zero values are generated, and where most of these zero values are consecutive (the continuity 
length is set as 3ε  at a minimum), and their could be expressed as follows: 
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Constraint 3. 2ε  zero values should be within a valid local minimum group that contains K 
mink . 
Constraint 4. If the number of consecutive zero values in a valid minimum group is larger 
than 3ε , then the valid group is judged to be with good continuity. 

Because the continuity between the different frequency bands of MFSK cannot satisfy these 
demands, we can then determine that the area of consecutive zero values within a valid local 
minimum group should be located between adjacent sources or within the noise spectrum, 
which can be set as an effective boundary area, and the N-1 boundary areas are represented by 

1{ }N
j jE −  based on the previous definition. Theoretically, these boundaries can be located 

anywhere in jE ; here, we define the boundaries iω  as being at the center of jE . 

4. Results and Analysis 

4.1 Setting and Definition of Parameters for Data 

Let 1{ }N
k ke =  represent the multiple reconstructed signal components, and then the correlation 

coefficient ρ  for ke  and the source signal is  is defined as follows: 
 

        
1

1( , )
1

k i

k i

j jQ
k e i s

k i
j e s

e s
e s

Q
µ µ

ρ
σ σ=

  − −
=     −   

∑                 (15) 

 
here, Q  represents the length of the sequence ke , 

keµ  and 
isµ  are the mean values of ke  and 

is , respectively. 
keσ  and 

isσ  are the standard deviations of ke  and is , respectively. 

To obtain a meaningful ( , )k ie sρ , a threshold 3ε  is used to select the ke  with more 
information and higher correlation. In general, 4( , )ke fρ ε≥ (usually, 4ε = 0.3 or 0.4) [23], 

for filtering, and the set of p  reconstructed components is represented by 1{ }p
j je = . For more 

comprehensive evaluation of the separation performance, it is necessary to consider the 
correlations between je  and all sources 1{ }n

i is = . We therefore define 
issegscore  as the 

separation coefficient of is , which is expressed as follows: 
 

                 max
1max{ ( , )}p

i j q j i jsc e sρ= ==                              (16) 
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i
sc e sρ

=

=∑                 (17) 
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s i i i
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i i

segscore sc sc sc
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= − −

= −
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When j q=  ( q p∈ ), ( , )j ie sρ  produces the maximum max
isc , where sum

isc  is the sum of 

1{ ( , ) }n
q i ie sρ = . Larger values of 

issegscore  indicate stronger correlation between qe  and is , 

while also corresponding to weaker correlation between qe  and the other sources, and this 

represents a better separation effect for is . Finally, for the input time-frequency overlapped 
signal f , the overall separation coefficient fsegall  is defined as: 

 

           
1

1
i

n

f s
i

segall segscore
n =

= ∑                 (19) 

 
As the data for experiment, we selected parts of the typical signals and the overlapping 

conditions from the three time-frequency overlapped signal models for use in testing, and the 
signal combinations and the related parameters are listed in Table 1. The sampling frequency 
Fs  = 2 MHz, the random carrier frequency value of each signal is set in the [1/ 8,1/ 4] Fs×  
range, and the bandwidth is set in the [1/16,1/ 8] Fs×  range. The code length of the Barker 
signal is 13, and the sequence length of each source is 20000 points.  

 
Table 1. The selected combinations and related parameters in different models 

Type Combination Number Bandwidth Spectrum overlap ratio η (%) 

Model 1 EQFM+LFM (EL) 2 EQFM=LFM [50, 75, 100] EQFM+SFM (ES) EQFM=SFM 

Model 2 EQFM+4FSK(E4F) 2 EQFM>4FSK 4FSK(100) 
LFM+BPSK (LB) LFM>BPSK BPSK(100) 

Model 3 
FRANK+4FSK(F4F) 

2 
FRANK=4FSK 

[20, 40, 60, 80, 100] FRANK+Barker(FB) FRANK=Barker 
 

In the previous section, the difference detection threshold 1ε  was shown to be highly 
variable, depending on the difference factor α  that was used to adjust the detection sensitivity. 
Specifically, a larger value of α  may generate more sub bands, which would lead to cases 
where the integrity of an MFSK signal would destroyed more easily. Here, we set 2ε  as 0.5K, 
and 3ε  as 0.1K, and K represents the number of mink  in each local minimum group. To 
select a suitable value of α , Fig. 8 shows the overall separation coefficient fsegall  under 
various conditions, and we see that when values of α  of is equal to 5 or 6, it seems to produce 
much larger and more stable fsegall  values for different input hybrid signals. When α is set 
smaller, since the obtained number of sub bands is less, then the hybrid signals may still be 
unsegregated, so the fsegall is smaller. 
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Fig. 8. The variation curves of fsegall  for different input signal combinations under different values 
of α . (a) Model 1 and Model 2; (b) Model 3. 

4.2 Testing 

To compare the classic EWT with the improved EWT in detail, 
issegscore  is used to show 

the separation performance of each source. 
For model 1 and model 2, Two different stretch-class distribution signals of the same 

bandwidth, 1 2[ , ]s s  , have an overlap of frequency when α =6; the 
issegscore  values are 

given in Table 2. Table 3 shows the separation performances of the stretch-class distribution 
component 3s  and the compact-class distribution component 4s  for input, where 3 4=η η = 
100%, and α = 6.  

For model 3, Two compact-class distribution components with the same bandwidth, 
5 6[ , ]s s , have an overlap for different spectrum overlap ratios when α =5. The separation 

performance results are shown in Table 4.  
When compared with the classic EWT, in the test for model 2, almost all the sources 

obtained much higher 
issegscore results, thus indicating better separation of the two 

independent for model 1 and model 3, when 75%η ≥ , most of the sources gain a slight 
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improvement when using the improved EWT, although the separation effect is still poor; when 
60%η ≤ , all test signal combinations obtained good and stable separation performances and 

greatly enhanced 
issegscore results. However, no matter which method is used for the input 

hybrid signals, if [ , ]( )
i js ssegscore segscore i j≠  in the same test combination are almost the 

same, this means that both reconstructed signals will still be in the same sub band, indicating 
that they have not been separated; this case usually occurs when 80%η ≥ . 

To provide a further overview of the difference between the classic and improved EWTs, 
we selected the test combinations that have shown good separation performance from the 
results given above, and calculated the corresponding fsegall  for each combination for 
comparison purposes, with results as shown in Fig. 9. 

 
Table 2. The 

issegscore of each source in model 1 

(The obvious improved 
issegscore is reported in bold) 

Test 
η = 50% η = 75% η = 100% 

Classic 
EWT 

Improved 
EWT 

Classic 
EWT 

Improved 
EWT 

Classic 
EWT 

Improved 
EWT 

EQFM 0.2954 0.3333 0.7218 0.6793 0.2869 0.3020 
LFM 0.1896 0.6707 0.4218 0.5665 0.1237 0.2015 

EQFM 0.3521 0.5220 0.2108 0.3458 0.1648 0.1808 
SFM 0.4428 0.7005 0.6407 0.6502 0.2680 0.3048 

 
Table 3. The 

issegscore of each source in model 2 

(The obvious improved 
issegscore is reported in bold) 

Test 
η = 100%(4FSK, BPSK) 

Classic EWT Improved EWT 
EQFM 0.5640 0.6067 
4FSK 0.3421 0.5652 
LFM 0.2786 0.6207 
BPSK 0.6981 0.7038 

 
Table 4. The 

issegscore of each source in model 3 

(The obvious improved 
issegscore is reported in bold) 

Test 
η = 20% η = 45% η = 60% η = 80% η = 100% 

Classic 
EWT 

Improved 
EWT 

Classic 
EWT 

Improved 
EWT 

Classic 
EWT 

Improved 
EWT 

Classic 
EWT 

Improved 
EWT 

Classic 
EWT 

Improved 
EWT 

FRANK 0.6015 0.7921 0.5630 0.7833 0.5664 0.6671 0.1401 0.2790 0.0773 0.1000 
4FSK 0.5265 0.7497 0.5051 0.6530 0.5546 0.6781 0.2701 0.1453 0.0773 0.1000 

FRANK 0.7406 0.8760 0.7514 0.8440 0.7201 0.7536 0.4429 0.4279 0.0273 0.0457 
Barker 0.9030 0.9102 0.8636 0.8357 0.7105 0.7038 0.3940 0.4209 0.0273 0.0817 
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Fig. 9. (a) The compare of variation curve of fsegall  for selected input signal combinations. (b) The 

compare of the growth rate of the corresponding signal combinations. 
 

The results in Fig. 9a show that, in general, for all selected combinations, the separation 
performance of the improved EWT is always better than that of classic EWT. As for  Fig. 9b, 
the growth rate of fsegall  is used to quantize the improvements for the different 
combinations in detail, and the average overall growth rate shows an increase of 
approximately 32.3%. Among these results, the EQFM+LFM (EL, η = 50%) combination 
shows the highest increase of 107.0%. For the signal combinations containing MFSK, the 
EQFM+4FSK (E4F) combination increased by 29.3% and the Frank+4FSK (F4F, 

20% 40% 60%η = 、 、 ) showed an average increase of 30.4%. By combining the results given 
in Table 4 with those of the previous analysis, we find that if 60%η ≥ , the improved EWT 
produces very little improvement in the Frank+4FSK (F4F) combination and the separation 
problem also becomes more difficult. 

4.3 Algorithm Complexity 
The difference between the classic EWT and the improved EWT mainly lies in the boundary 
detection approach used, so their algorithm complexities must be analyzed.  
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The classic EWT determines and filters out the “important maxima” based on a scale-space 
algorithm, where a Gaussian kernel is used to construct the corresponding low-pass impulse 
response filter [24]. Because the data in the Fourier spectrum can be regarded as being 
one-dimensional, the filter is given by: 

 

             ( , ) ( ) ( ; )
m

L n t f n m g m t
+∞

=−∞

= −∑                 (20) 

where 

       
2 /21( ; )

2
m tg m t e

tπ
−=                 (21) 

Here  the filter size is defined as 2m+1, n is the sequence length of the input one-dimensional 
Fourier specturm data f , and t is an adjustable scale-space parameter which is finite sequence. 
If  n →∞  , then the  complexity can be expressed as  3( )T n= Ο . For the improved EWT, the 
fast boundary detection mechanism is mainly composed of difference optimization and 
continuity detection operations. The operations are mostly linear and the quantity of required 
calculation is relatively small, which is 5n at approximately, as shown in Table 5. 
 

Table 5. Computational Complexity Comparison of Different Algorithms 
Method Algorithm Main steps Complexity 
Classic  
EWT Scale space algorithm The construction of discrete spatial 

scale(Filter construction) 
3( )nΟ   

Improved 
EWT 

Fast boundary detection 
mechanism 

Difference optimization, continuity 
detection ( )nΟ  

 
As indicated by the results in Table 6, for sample data of the same length and complexity, 

the operating time of the improved EWT is much shorter than that of the classic EWT, and the 
average operation speed is increased by approximately 1000 times. As the data length 
increased, the running time of the improved EWT always maintained a slight increase, thus 
indicating higher operational efficiency. 

 
Table 6. The Compare of running time (second) between the classic and improved EWT 

Data length Classic EWT Improved EWT Ratio(Classic/Improved) 
5000 5.0487 0.1218 41 
10000 24.4052 0.1352 180 
15000 76.7484 0.1573 487 
20000 175.4452 0.1593 1101 
25000 401.1256 0.2206 1818 
30000 705.7267 0.2558 2759 

5. Conclusion 
Through the introduction of a fast boundary detection mechanism, this paper proposes an 
effective method for separation of single-channel time-frequency overlapped radar and 
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communication signals based on an improved empirical wavelet transform (EWT). To 
optimize the sub-band division approach, difference optimization and continuity detection 
techniques were used to replace the scale-space algorithm used in the classic EWT. The 
improved EWT improves the separation performance of input hybrid signals, specifically 
maintaining the integrity of MFSK signals during division, while also achieving good 
processing efficiency. At spectrum overlap ratios of less than 60%, the improved EWT 
provides a much better performance than the classic EWT. However, when the spectrum 
overlap ratio is more than 60%, the improved EWT cannot be used to implement separation  in 
a similar manner to the classic EWT. 
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