• Title/Summary/Keyword: Information input algorithm

Search Result 2,444, Processing Time 0.034 seconds

A Real-Time Embedded Speech Recognition System

  • Nam, Sang-Yep;Lee, Chun-Woo;Lee, Sang-Won;Park, In-Jung
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.690-693
    • /
    • 2002
  • According to the growth of communication biz, embedded market rapidly developing in domestic and overseas. Embedded system can be used in various way such as wire and wireless communication equipment or information products. There are lots of developing performance applying speech recognition to embedded system, for instance, PDA, PCS, CDMA-2000 or IMT-2000. This study implement minimum memory of speech recognition engine and DB for apply real time embedded system. The implement measure of speech recognition equipment to fit on embedded system is like following. At first, DC element is removed from Input voice and then a compensation of high frequency was achieved by pre-emphasis with coefficients value, 0.97 and constitute division data as same size as 256 sample by lapped shift method. Through by Levinson - Durbin Algorithm, these data can get linear predictive coefficient and again, using Cepstrum - Transformer attain feature vectors. During HMM training, We used Baum-Welch reestimation Algorithm for each words training and can get the recognition result from executed likelihood method on each words. The used speech data is using 40 speech command data and 10 digits extracted form each 15 of male and female speaker spoken menu control command of Embedded system. Since, in many times, ARM CPU is adopted in embedded system, it's peformed porting the speech recognition engine on ARM core evaluation board. And do the recognition test with select set 1 and set 3 parameter that has good recognition rate on commander and no digit after the several tests using by 5 proposal recognition parameter sets. The recognition engine of recognition rate shows 95%, speech commander recognizer shows 96% and digits recognizer shows 94%.

  • PDF

A Study on the Law2Vec Model for Searching Related Law (연관법령 검색을 위한 워드 임베딩 기반 Law2Vec 모형 연구)

  • Kim, Nari;Kim, Hyoung Joong
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1419-1425
    • /
    • 2017
  • The ultimate goal of legal knowledge search is to obtain optimal legal information based on laws and precedent. Text mining research is actively being undertaken to meet the needs of efficient retrieval from large scale data. A typical method is to use a word embedding algorithm based on Neural Net. This paper demonstrates how to search relevant information, applying Korean law information to word embedding. First, we extracts reference laws from precedents in order and takes reference laws as input of Law2Vec. The model learns a law by predicting its surrounding context law. The algorithm then moves over each law in the corpus and repeats the training step. After the training finished, we could infer the relationship between the laws via the embedding method. The search performance was evaluated based on precision and the recall rate which are computed from how closely the results are associated to the search terms. The test result proved that what this paper proposes is much more useful compared to existing systems utilizing only keyword search when it comes to extracting related laws.

A Study on Face Recognition Using Diretional Face Shape and SOFM (방향성 얼굴형상과 SOFM을 이용한 얼굴 인식에 관한 연구)

  • Kim, Seung-Jae;Lee, Jung-Jae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.109-116
    • /
    • 2019
  • This study proposed a robust detection algorithm. It detects face more stably with respect to changes in light and rotation for the identification of a face shape. Also it satisfies both efficiency of calculation and the function of detection. The algorithm proposed segmented the face area through pre-processing using a face shape as input information in an environment with a single camera and then identified the shape using a Self Organized Feature Map(SOFM). However, as it is not easy to exactly recognize a face area which is sensitive to light, it has a large degree of freedom, and there is a large error bound, to enhance the identification rate, rotation information on the face shape was made into a database and then a principal component analysis was conducted. Also, as there were fewer calculations due to the fewer dimensions, the time for real-time identification could be decreased.

Effective Object Recognition based on Physical Theory in Medical Image Processing (의료 영상처리에서의 물리적 이론을 활용한 객체 유효 인식 방법)

  • Eun, Sung-Jong;WhangBo, Taeg-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.12
    • /
    • pp.63-70
    • /
    • 2012
  • In medical image processing field, object recognition is usually processed based on region segmentation algorithm. Region segmentation in the computing field is carried out by computerized processing of various input information such as brightness, shape, and pattern analysis. If the information mentioned does not make sense, however, many limitations could occur with region segmentation during computer processing. Therefore, this paper suggests effective region segmentation method based on R2-map information within the magnetic resonance (MR) theory. In this study, the experiment had been conducted using images including the liver region and by setting up feature points of R2-map as seed points for 2D region growing and final boundary correction to enable region segmentation even when the border line was not clear. As a result, an average area difference of 7.5%, which was higher than the accuracy of conventional exist region segmentation algorithm, was obtained.

Hardware Implementation of Low-power Display Method for OLED Panel using Adaptive Luminance Decreasing (적응적 휘도 감소를 이용한 OLED 패널의 저전력 디스플레이 방법 및 하드웨어 구현)

  • Cho, Ho-Sang;Choi, Dae-Sung;Seo, In-Seok;Kang, Bong-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1702-1708
    • /
    • 2013
  • OLED has good efficiency of power consumption by having no power consumption from black color as different with LCD. when it has white color, all RGB pixel should be glowing with high power consumption and that can make it has short life time. This paper suggest the way of low power consumption for OLED panel using adaptive luminance enhancement with color compensation and implement it as hardware. This way which is based on luminance information of input image makes converted luminance value from each pixel in real time. There is with using the basic idea of chromaticity reduction algorithm, showing new algorithm of color correction. And performance of proposed method was confirmed by comparing the conventional method in experiments about 48.43% current reduction. The proposed method was designed by Verilog HDL and was verified by using OpenCV and Windows Program.

Improving Clustering-Based Background Modeling Techniques Using Markov Random Fields (클러스터링과 마르코프 랜덤 필드를 이용한 배경 모델링 기법 제안)

  • Hahn, Hee-Il;Park, Soo-Bin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.157-165
    • /
    • 2011
  • It is challenging to detect foreground objects when background includes an illumination variation, shadow or structural variation due to its motion. Basically pixel-based background models including codebook-based modeling suffer from statistical randomness of each pixel. This paper proposes an algorithm that incorporates Markov random field model into pixel-based background modeling to achieve more accurate foreground detection. Under the assumptions the distance between the pixel on the input imaging and the corresponding background model and the difference between the scene estimates of the spatio-temporally neighboring pixels are exponentially distributed, a recursive approach for estimating the MRF regularizing parameters is proposed. The proposed method alternates between estimating the parameters with the intermediate foreground detection and estimating the foreground detection with the estimated parameters, after computing it with random initial parameters. Extensive experiment is conducted with several videos recorded both indoors and outdoors to compare the proposed method with the standard codebook-based algorithm.

Encryption of Biometrics data for Security Improvement in the User Authentication System (사용자 인증 시스템의 보안성 향상을 위한 생체인식 데이터의 암호화)

  • Park, Woo-Geun
    • Journal of IKEEE
    • /
    • v.9 no.1 s.16
    • /
    • pp.31-39
    • /
    • 2005
  • This paper presented new biometrics data transfer model, and use MD5 (Message Digest5) and RSA (Ron Rivest, Adi Shamir, Len Adleman) algorithm to improve biometrics data's security. So, did so that can run user authentication more safely. That is, do so that may input fingerprint among biometrics through client, and transmit processed fingerprint to server. When fingerprint information is transmitted, it uses MD5 algorithm to solve problem that get seized unlawful living body information from outside and information does Digest. And did to pass through process that transmit again this by RSA method. Also, experimented general text data and living body data that is not encoded, transmission speed and security of living body data that encoding and transmit each comparison. By running user authentication through such improved method, is expected to be applied in several. fields by method to simplify certification procedure and is little more correct and stable.

  • PDF

Recognition System of Car License Plate using Fuzzy Neural Networks (퍼지 신경망을 이용한 자동차 번호판 인식 시스템)

  • Kim, Kwang-Baek;Cho, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.313-319
    • /
    • 2007
  • In this paper, we propose a novel method to extract an area of car licence plate and codes of vehicle number from a photographed car image using features on vertical edges and a new Fuzzy neural network algorithm to recognize extracted codes. Prewitt mask is used in searching for vertical edges for detection of an area of vehicle number plate and feature information of vehicle number palate is used to eliminate image noises and extract the plate area and individual codes of vehicle number. Finally, for recognition of extracted codes, we use the proposed Fuzzy neural network algorithm, in which FCM is used as the learning structure between input and middle layers and Max_Min neural network is used as the learning structure within inhibition and output layers. Through a variety of experiments using real 150 images of vehicle, we showed that the proposed method is more efficient than others.

  • PDF

Vibration Control of Vehicle using Road Profile Information (외란 형상 정보를 활용한 진동제어)

  • Kim, Hyo-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.431-437
    • /
    • 2017
  • In this study, based on the RPS algorithm, the application results to an electrically controlled suspension system using previewed road information are presented. Reducing the excessive vibration induced by a disturbance transmitted to the system and secure its stability is a major issue. In particular, in the automotive industry, the demand is constantly being raised. A typical external disturbance causing vibration and instability of a vehicle is an irregular roadway surface that contacts a running vehicle tire. Therefore, obtaining such profile information is an important process. The RPS algorithm using a multi sensor system was constructed and implemented in a real car. Through experimental work using the RPS system included non-contact type optical sensors, it could robustly reconstruct the road input profiles from the intermixed data onto the vehicle's dynamic motion while traveling at an uneven roadway surface. A controller with a preview control was designed in the framework of a semi-active suspension system based on the 7 degrees of freedom full vehicle model. The control performance of the system was evaluated through simulations and the results were compared with the passive vehicle condition. These results highlight the feasibility of the presented control frame.

A new model approach to predict the unloading rock slope displacement behavior based on monitoring data

  • Jiang, Ting;Shen, Zhenzhong;Yang, Meng;Xu, Liqun;Gan, Lei;Cui, Xinbo
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.105-113
    • /
    • 2018
  • To improve the prediction accuracy of the strong-unloading rock slope performance and obtain the range of variation in the slope displacement, a new displacement time-series prediction model is proposed, called the fuzzy information granulation (FIG)-genetic algorithm (GA)-back propagation neural network (BPNN) model. Initially, a displacement time series is selected as the training samples of the prediction model on the basis of an analysis of the causes of the change in the slope behavior. Then, FIG is executed to partition the series and obtain the characteristic parameters of every partition. Furthermore, the later characteristic parameters are predicted by inputting the earlier characteristic parameters into the GA-BPNN model, where a GA is used to optimize the initial weights and thresholds of the BPNN; in the process, the numbers of input layer nodes, hidden layer nodes, and output layer nodes are determined by a trial method. Finally, the prediction model is evaluated by comparing the measured and predicted values. The model is applied to predict the displacement time series of a strong-unloading rock slope in a hydropower station. The engineering case shows that the FIG-GA-BPNN model can obtain more accurate predicted results and has high engineering application value.