• Title/Summary/Keyword: Information Algorithm

Search Result 29,040, Processing Time 0.045 seconds

Effective MPI_Allgather Algorithm in MPICH for Clusters Connected by Switched Networks (Switched Network로 연결된 Cluster의 MPICH에서 효율적인 MPI_Allgather Algorithm)

  • Kim, Chul-Hwan;Chung, Yoo-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10a
    • /
    • pp.490-493
    • /
    • 2006
  • 본 논문은 Linux Cluster의 MPICH에서 MPI_Allgather Algorithm의 성능을 개선하고 실험을 통해 최대 30%의 성능향상을 증명하였다. MPICH의 기존 버전이 메시지의 크기와 실행 프로세스 수에 따라 Recursive Doubling, Bruck Algorithm, Ring Algorithm을 차등 적용했던 것을, 앞의 Algorithm을 개선하여 Double Bruck Algorithm, Double Ring Algorithm을 제안, 구현하였다.

  • PDF

Point In Triangle Testing Based Trilateration Localization Algorithm In Wireless Sensor Networks

  • Zhang, Aiqing;Ye, Xinrong;Hu, Haifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2567-2586
    • /
    • 2012
  • Localization of sensor nodes is a key technology in Wireless Sensor Networks(WSNs). Trilateration is an important position determination strategy. To further improve the localization accuracy, a novel Trilateration based on Point In Triangle testing Localization (TPITL)algorithm is proposed in the paper. Unlike the traditional trilateration localization algorithm which randomly selects three neighbor anchors, the proposed TPITL algorithm selects three special neighbor anchors of the unknown node for trilateration. The three anchors construct the smallest anchor triangle which encloses the unknown node. To choose the optimized anchors, we propose Point In Triangle testing based on Distance(PITD) method, which applies the estimated distances for trilateration to reduce the PIT testing errors. Simulation results show that the PIT testing errors of PITD are much lower than Approximation PIT(APIT) method and the proposed TPITL algorithm significantly improves the localization accuracy.

Using mean shift and self adaptive Canny algorithm enhance edge detection effect (Mean Shift 알고리즘과 Canny 알고리즘을 이용한 에지 검출 향상)

  • Lei, Wang;Shin, Seong-Yoon;Rhee, Yang-Won
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.207-210
    • /
    • 2009
  • Edge detection is an important process in low level image processing. But many proposed methods for edge detection are not very robust to the image noise and are not flexible for different images. To solve the both problems, an algorithm is proposed which eliminate the noise by mean shift algorithm in advance, and then adaptively determine the double thresholds based on gradient histogram and minimum interclass variance, With this algorithm, it can fade out almost all the sensitive noise and calculate the both thresholds for different images without necessity to setup any parameter artificially, and choose edge pixels by fuzzy algorithm.

  • PDF

An Adaptive Clustering Algorithm Based on Genetic Algorithm (유전자 알고리즘 기반 적응 군집화 알고리즘)

  • Park Namhyun;Ahn Chang Wook;Ramakrishna R.S.
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.11a
    • /
    • pp.459-462
    • /
    • 2004
  • This paper proposes a genetically inspired adaptive clustering algorithm. The algorithm automatically discovers the actual number of clusters and efficiently performs clustering without unduly compromising cluster purity. Chromosome encoding that ensures the correct number of clusters and cluster purity is discussed. The required fitness function is desisted on the basis of modified similarity criteria and genetic operators. These are incorporated into the proposed adaptive clustering algorithm. Experimental results show the efficiency of the clustering algorithm on synthetic data sets and real world data sets.

  • PDF

Hybrid Fireworks Algorithm with Dynamic Coefficients and Improved Differential Evolution

  • Li, Lixian;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.19-27
    • /
    • 2021
  • Fireworks Algorithm (FWA) is a new heuristic swarm intelligent algorithm inspired by the natural phenomenon of the fireworks explosion. Though it is an effective algorithm for solving optimization problems, FWA has a slow convergence rate and less information sharing between individuals. In this paper, we improve the FWA. Firstly, explosion operator and explosion amplitude are analyzed in detail. The coefficient of explosion amplitude and explosion operator change dynamically with iteration to balance the exploitation and exploration. The convergence performance of FWA is improved. Secondly, differential evolution and commensal learning (CDE) significantly increase the information sharing between individuals, and the diversity of fireworks is enhanced. Comprehensive experiment and comparison with CDE, FWA, and VACUFWA for the 13 benchmark functions show that the improved algorithm was highly competitive.

Improvement of OPW-TR Algorithm for Compressing GPS Trajectory Data

  • Meng, Qingbin;Yu, Xiaoqiang;Yao, Chunlong;Li, Xu;Li, Peng;Zhao, Xin
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.533-545
    • /
    • 2017
  • Massive volumes of GPS trajectory data bring challenges to storage and processing. These issues can be addressed by compression algorithm which can reduce the size of the trajectory data. A key requirement for GPS trajectory compression algorithm is to reduce the size of the trajectory data while minimizing the loss of information. Synchronized Euclidean distance (SED) as an important error measure is adopted by most of the existing algorithms. In order to further reduce the SED error, an improved algorithm for open window time ratio (OPW-TR) called local optimum open window time ratio (LO-OPW-TR) is proposed. In order to make SED error smaller, the anchor points are selected by calculating point's accumulated synchronized Euclidean distance (ASED). A variety of error metrics are used for the algorithm evaluation. The experimental results show that the errors of our algorithm are smaller than the existing algorithms in terms of SED and speed errors under the same compression ratio.

A Study on Multi-Signal DOA Estimation in Fading Channels

  • Lee Kwan-Houng;Song Woo-Young
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.3
    • /
    • pp.115-118
    • /
    • 2005
  • In this study, the proposed algorithm is a correlativity signal in a mobile wireless channel that has estimated the direction of arrival. The proposed algorithm applied the space average method in a MUSIC algorithm. The diagonal matrix of the space average method was changed to inverse the matrix and to obtain a new signal correlation matrix. The existing algorithm was analyzed and compared by applying a proposed signal correlation matrix to estimate the direction of arrival in a MUSIC algorithm. The experiment resulted in a proposed algorithm with a min-norm method resolution at more than $5^{\circ}$. It improved more than $2^{\circ}$ in a MUSIC algorithm.

Flow Holding Time based Advanced Hybrid QoS Routing Link State Update in QoS Routing

  • Cho, Kang Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.4
    • /
    • pp.17-24
    • /
    • 2016
  • In this paper, we propose a AH LSU(Advanced Hybrid QoS Routing Link State Update) Algorithm that improves the performance of Hybrid LSU(Hybrid QoS Link State State Update) Algorithm with statistical information of flow holding time in network. AH LSU algorithm has had both advantages of LSU message control in periodic QoS routing LSU algorithm and QoS routing performance in adaptive LSU algorithm. It has the mechanism that calculate LSU message transmission priority using the flow of statistical request bandwidth and available bandwidth and include MLMR(Meaningless LSU Message Removal) mechanism. MLMR mechanism can remove the meaningless LSU message generating repeatedly in short time. We have evaluated the performance of the MLMR mechanism, the proposed algorithm and the existing algorithms on MCI simulation network. We use the performance metric as the QoS routing blocking rate and the mean update rate per link, it thus appears that we have verified the performance of this algorithm.

Maze Solving Algorithm

  • Ye, Gan Zhen;Kang, Dae-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.188-191
    • /
    • 2011
  • Path finding and path planning is crucial in today's world where time is an extremely valuable element. It is easy to plan the optimum path to a destination if provided a map but the same cannot be said for an unknown and unexplored environment. It will surely be exhaustive to search and explore for paths to reach the destination, not to mention planning for the optimum path. This is very much similar to finding for an exit of a maze. A very popular competition designed to tackle the maze solving ability of autonomous called Micromouse will be used as a guideline for us to design our maze. There are numerous ways one can think of to solve a maze such as Dijkstra's algorithm, flood fill algorithm, modified flood fill algorithm, partition-central algorithm [1], and potential maze solving algorithm [2]. We will analyze these algorithms from various aspects such as maze solving ability, computational complexity, and also feasibility to be implemented.

  • PDF

Directional Interpolation Based on Improved Adaptive Residual Interpolation for Image Demosaicking

  • Liu, Chenbo
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1479-1494
    • /
    • 2020
  • As an important part of image processing, image demosaicking has been widely researched. It is especially necessary to propose an efficient interpolation algorithm with good visual quality and performance. To improve the limitations of residual interpolation (RI), based on RI algorithm, minimalized-Laplacian RI (MLRI), and iterative RI (IRI), this paper focuses on adaptive RI (ARI) and proposes an improved ARI (IARI) algorithm which obtains more distinct R, G, and B colors in the images. The proposed scheme fully considers the brightness information and edge information of the image. Since the ARI algorithm is not completely adaptive, IARI algorithm executes ARI algorithm twice on R and B components according to the directional difference, which surely achieves an adaptive algorithm for all color components. Experimental results show that the improved method has better performance than other four existing methods both in subjective assessment and objective assessment, especially in the complex edge area and color brightness recovery.