

www.kips.or.kr Copyright© 2017 KIPS

Improvement of OPW-TR Algorithm for
Compressing GPS Trajectory Data

Qingbin Meng*, Xiaoqiang Yu*, Chunlong Yao*, Xu Li*,

Peng Li*, and Xin Zhao*

Abstract
Massive volumes of GPS trajectory data bring challenges to storage and processing. These issues can be
addressed by compression algorithm which can reduce the size of the trajectory data. A key requirement for
GPS trajectory compression algorithm is to reduce the size of the trajectory data while minimizing the loss of
information. Synchronized Euclidean distance (SED) as an important error measure is adopted by most of the
existing algorithms. In order to further reduce the SED error, an improved algorithm for open window time
ratio (OPW-TR) called local optimum open window time ratio (LO-OPW-TR) is proposed. In order to make
SED error smaller, the anchor points are selected by calculating point’s accumulated synchronized Euclidean
distance (ASED). A variety of error metrics are used for the algorithm evaluation. The experimental results
show that the errors of our algorithm are smaller than the existing algorithms in terms of SED and speed
errors under the same compression ratio.

Keywords
ASED, GPS Trajectory, SED, Trajectory Compression

1. Introduction

In recent years, with the number of GPS-enabled devices growing rapidly, demand of location-based
service shows a significant growth trend. Through location-based service, users can upload, visualize,
browse and share those trajectories [1]. From other traveler's trajectories, people can find travel routes
and hot areas that interest them. However, these devices generate massive volumes of GPS trajectory
data. A calculation in [2] shows that if we collect data in every 10 second, without any compression, 100
MB of storage capacity is required to store the data for just 400 objects in a single day. This brings some
problems in location-based service applications: (1) These GPS trajectory data will take up huge storage
spaces. (2) These GPS trajectory data will cause network overhead. (3) It is difficult to find useful
patterns from massive raw trajectory data [3,4]. (4) It will bring a heavy burden for a web browser while
rendering these trajectories on the client side. It takes approximately 1 second to render just 1,000
points [5]. To solve these problems, the trajectory compression technique is given increasing concern.

According to the different categorization methods, trajectory compression can be classified as online

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received April 5, 2016; first revision December 15, 2016; accepted January 4, 2017.

Corresponding Author: Chunlong Yao (yaocl@dlpu.edu.cn)

* School of Information Science and Engineering, Dalian Polytechnic University, Dalian, China (mengqingbin@foxmail.com, {tigeryxq, yaocl}@
dlpu.edu.cn, lixu102@aliyun.com, {lipeng, zhaoxin}@dlpu.edu.cn)

J Inf Process Syst, Vol.13, No.3, pp.533~545, June 2017 ISSN 1976-913X (Print)

https://doi.org/10.3745/JIPS.03.0073 ISSN 2092-805X (Electronic)

Improvement of OPW-TR Algorithm for Compressing GPS Trajectory Data

534 | J Inf Process Syst, Vol.13, No.3, pp.533~545, June 2017

and offline compression or lossless and lossy compression. Online algorithm has the advantage of
supporting real-time applications, which can compress trajectory data while retrieving points from
trajectory. Offline algorithm begins to compress only after all points are obtained from the input
trajectory. In general, offline algorithm has smaller errors than online algorithm. Lossless compression
algorithm enables reconstruction the original data without information loss. Lossy compression will
lose some information, and which cannot reconstruct the original data. Usually, the compression
efficiency of lossless compression algorithm is not obvious. For example, the compression efficiency of
lossless compression algorithm in which the local dictionary encoding and difference Huffman encoding
are used, is 25% [6]. The main idea of lossy trajectory compression is to remove the redundant points.
For example, a uniform linear motion trajectory can be represented by using just two points (first point
and last point). The primary advantage of lossy compression is that it can significantly reduce the size of
data while maintaining an acceptable error tolerance. Due to the advantage of lossy compression, this
paper focuses on lossy compression of the trajectory data.

Douglas-Peuker (DP) algorithm [7] compresses trajectory data through recursive calculating the
Euclidean distance from point to beeline to decide which points should be retained. Optimal algorithms
[8-10] aim at minimizing Euclidean distance error, which can achieve a minimum error by removing
points in searching process. Due to the computational overhead of the optimal algorithms, near-
optimal algorithm is proposed. The algorithms proposed in [11,12] can achieve a faster search by
reducing search space and using heuristic search. The paper [13] proposes an algorithm based on
inflection point judgment method, in which the advantages and disadvantages of point by point
judgment method and multi-point joint judgment method are analyzed. Trajectory simplification (TS)
algorithm [14] uses heading change degree of the point and distance between this point and its most
adjacent neighbors to weight importance of the point. The points with high weight will be retained in
final compressed trajectory. These algorithms focus only on maintaining the shape of the trajectory,
there is a lack of consideration of temporal information. However, the GPS trajectory contains both
spatial and temporal information. A number of algorithms have been proposed with temporal
information considered. Top-down time-ratio (TD-TR) [2] is an improvement algorithm of DP, which
uses SED instead of Euclidean distance. Compared to DP, TD-TR has the benefit of taking temporal
information into account. Open window time ratio (OPW-TR) [2] algorithm calculates each point’s
SED between the anchor point and the float point. If all the SED values are less than a given threshold,
then the float point moves forward one point. Otherwise, a new anchor point will be chosen out. Based
on the different anchor point selection strategies, OPW-TR has two modes called Before-OPW-TR and
Normal-OPW-TR. Threshold-guided algorithm [15] compresses trajectory by constructing a safe area
using moving object’s speed and direction, if an incoming positioning point lies in the safe area, then
this point contributes little information and can be discarded without significant loss in accuracy.
Spatial QUalIty Simplification Heuristic – extended (SQUISH-E) algorithm [16] is an extended version
of SQUISH [17], SQUISH-E compresses trajectory data by removing points of the lowest priority from
the priority queue while ensuring that SED error is within a user-specified bound. According to
parameters setting, SQUISH-E can be divided into SQUISH-E(μ) and SQUISH-E(λ).

Because online algorithm has the advantage of supporting real-time applications, an online trajectory
compression algorithm is proposed in this paper. The algorithm compresses trajectory data by calculating
point’s accumulated synchronized Euclidean distance (ASED). In this algorithm, the redundant points
will be discarded to reduce storage spaces and improve the efficiency of data processing and transmitting.

Qingbin Meng, Xiaoqiang Yu, Chunlong Yao, Xu Li, Peng Li, and Xin Zhao

J Inf Process Syst, Vol.13, No.3, pp.533~545, June 2017 | 535

The remainder of this paper is organized as follows. In the next section, some definitions are given. In
Section 3, our LO-OPW-TR (local optimum open window time ratio) algorithm is described in detail.
In Section 4, some results with different error measurements are shown. Finally, paper conclusion and
future work are discussed in Section 5.

2. Definitions

Definition 1. GPS trajectory: A GPS trajectory T of length n is a temporally ordered sequence of
positioning points {P1, P2, P3, ..., Pn-1, Pn}, each GPS point contains coordinates x, y and timestamp t.

Definition 2. Trajectory compression: Given a GPS trajectory T = {P1, P2, P3, ..., Pn-1, Pn}, the
intention of trajectory compression is to seek a set of temporally ordered positioning points T´ (a subset
of T), i.e., T´ = {Pi1, Pi2, Pi3, ... , Pi[m-1], Pim}, where 1= i1 < ... < im = n.

Definition 3. Spatial error and Synchronized Euclidean Distance (SED) [16]: Given a trajectory T
and its compressed representation T´, the spatial error of T´ with respect to point Pi in T is defined as
the distance between Pi(xi, yi, ti) and its estimation P´i(x´i, y´i, ti). If T´ contains Pi , then P´i = Pi.
Otherwise, the closest point to Pi is defined as P´i which is along the line between predT´(Pi) and
succT´(Pi), where predT´(Pi) and succT´(Pi) denote Pi´s closest predecessor and successor among the
points in T´. The SED [15] of point Pi is also defined as the distance between Pi(xi, yi, ti) and its
estimation P´i(x´i, y´i, ti), the difference is that the value of x´i and y´i are calculated by using formulae
(3) and (4), where Ps(xs, ys, ts)=predT´(Pi) and Pe(xe, ye, te)=succT´(Pi).

For instance, in Fig. 1(a), the spatial errors of P1, P4, P6 are zeros and the spatial error of P2 is the
perpendicular distance from P2 to line 41PP . In Fig. 1(b), the SED values of P1, P4, P6 are zeros and the
SED value of P2 is the distance between P2 and P´2.

se ttt −=Δ 1 (1)

si ttt −=Δ 2 (2)

)()12 sesi xxttxx −∗ΔΔ+=′ （
 (3)

)()12 sesi yyttyy −∗ΔΔ+=′ （
 (4)

 (a) (b)

Fig. 1. Spatial error (a) and SED (b) are illustrated by using T = {P1, P2, P3, P4, P5, P6} and T´ = {P1, P4, P6}.

Improvement of OPW-TR Algorithm for Compressing GPS Trajectory Data

536 | J Inf Process Syst, Vol.13, No.3, pp.533~545, June 2017

Definition 4. Speed and heading: Given a trajectory T = {P1, P2, P3, ..., Pn-1, Pn}, for any point Pi in the
trajectory T (except the last point Pn), we can calculate Pi’s heading and speed through formulae (5) and
(6).

1+= iii PPh (5)

)()(11 iiiii tt/,PPDistancespeed −= ++ (6)

Definition 5. Compression ratio: Given a GPS trajectory T = {P1, P2, P3, ... , Pn-1, Pn} and its
compressed representation T´ = {Pi1, Pi2, Pi3, ... , Pi[m-1], Pim}, the compression ratio CR is defined as
follow.

m
nCR = (7)

3. LO-OPW-TR Algorithm

Given a trajectory T and a SED threshold ε, OPW-TR algorithm starts by defining a segment between
the first point P1 (the anchor point) and the third point P3 (the float point). Then the algorithm
calculates all the SED values of the points between the anchor point and the float point. As long as all
the SED values are smaller than ε, an attempt is made to move the float point one point forward in
trajectory T. When the SED threshold ε is exceeded, two strategies can be applied: either the point
causing the threshold violation becomes the new anchor point (Normal-OPW-TR), or the point just
before it becomes the new anchor point (Before-OPW-TR).

The above process will be repeated until the entire trajectory has been transformed into a piecewise
linear approximation. By modifying anchor point selection strategy, a new algorithm called LO-OPW-
TR is proposed. This algorithm selects new anchor point by calculating point’s ASED, the point with
the minimum ASED value becomes the new anchor point. For each point Pi between the anchor point
(Pa) and the float point (Pb), Pi’s ASED value can be calculated by using formula (8).

)()()(
1

1

1

1

∑∑
−

+=

−

+=

+=

b

ij

j

i

aj

ji PSEDPSEDPASED (8)

Fig. 2 gives an example of the anchor point selection, in which P1 is the anchor point and P9 is the

float point. First, the SED values of P2, P3, P4, P5, P6, P7, P8 are calculated, and the SED values of P4, P5, P6
are exceed ε. Then, the ASED values of P2, P3, P4, P5, P6, P7, P8 are calculated, due to P6 has the minimum
ASED value, P6 and P8 become new anchor point and new float point, P2, P3, P4, P5 are removed from T.
Fig. 2 shows that the most appropriate anchor point is selected by using new anchor point selection
strategy.

Qingbin Meng, Xiaoqiang Yu, Chunlong Yao, Xu Li, Peng Li, and Xin Zhao

J Inf Process Syst, Vol.13, No.3, pp.533~545, June 2017 | 537

 (a) (b)

 (c) (d)

Fig. 2. An example of anchor point selection. (a) SEDs of P4, P5, P6 are exceed ε, (b) calculate ASED of
P4, (c) calculate ASED of P6, and (d) P6, P8 become anchor point and float point.

3.1 Pseudo-Code of LO-OPW-TR Algorithm

Algorithm 1 describes the details of LO-OPW-TR algorithm. At first P1 and P3 are selected as the
anchor point and the float point (lines 2 and 3). Then the algorithm calculates all the SED values of the
points between the anchor point and the float point (line 7). As long as all the SED values are smaller

Algorithm 1. LO-OPW-TR(T, ε)

INPUT :

 T = {P1, P2, ... , Pn} //original trajectory

 ε //SED error tolerance

OUTPUT : Tout = {P’1, P’2, ... , P’m} //compressed trajectory, P’1=P1,P’m=Pn ,m<n

1. Tout = []

2. anchorIndex = 1

3. floatIndex = 3

4. Tout = Tout Append P1

5. while (floatIndex < = n)

6. {

7. index = findNewAnchorIndex(anchorIndex, floatIndex)

8. if (index != -1) { //new anchor point and new float point are founded

9. Tout = Tout Append Pindex

10. anchorIndex = index

11. floatIndex = anchorIndex + 2

12. } else { //all SED values are smaller than ε

13. floatIndex += 1

14. }

15. }

16. if (Tout not contain Pn)

17. {

18. Tout = Tout Append Pn

19. }

20. return Tout

Improvement of OPW-TR Algorithm for Compressing GPS Trajectory Data

538 | J Inf Process Syst, Vol.13, No.3, pp.533~545, June 2017

than ε, an attempt is made to move the float point one point forward (line 13). Otherwise, Pindex becomes
the new anchor point and Pindex+2 becomes the new float point (lines 10 and 11). When all the points in T
are processed, the compressed trajectory Tout will be returned (line 20).

Algorithm 2 provides the detailed description of findNewAnchorIndex algorithm. This algorithm
calculates SED value of each point between the anchor point and the float point (line 3). If all the SED
values are smaller than ε, -1 will be returned (line 10). Otherwise, the new anchor point’s index will be
returned (line 7).

Algorithm 2. findNewAnchorIndex(anchorIndex, floatIndex)

INPUT :

 anchorIndex //anchor point’s index

 floatIndex //float point’s index

OUTPUT : newAnchorIndex //index of the new anchor point

1. newAnchorIndex = -1

2. for (i = anchorIndex + 1 until floatIndex) {

3. sed = GetSED(Pi, PanchorIndex, PfloatIndex) //calculate Pi’s SED value

4. if (sed > ε){

5. //find the point with the minimum ASED (use formula (8), and return the point’s index

6. newAnchorIndex = findPointIndexWithMinimumASED(anchorIndex, floatIndex)

7. return newAnchorIndex

8. }

9. }

10. return newAnchorIndex

Algorithm 3 provides a detailed description of findPointIndexWithMinimumASED algorithm.

This algorithm calculates each point’s ASED value between the anchor point and the float point, and
returns the index of the point which has the minimum ASED value. Given the anchor point and the
float point, Pi’s (anchorIndex<i<floatIndex) ASED value can be calculated by using formula (8) (lines
4 to 10).

Algorithm 3. findPointIndexWithMinimumASED(anchorIndex, floatIndex)

INPUT :
 anchorIndex //anchor point’s index

 floatIndex //float point’s index

OUTPUT : pointIndexWithMinimumASED //index of the point which has the minimum ASED

1. pointIndexWithMinimumASED = -1

2. minASEDError = Double.MaxValue

3. for (i = anchorIndex + 1 until floatIndex) {

4. ased_of_pi = 0

5. for(j = anchorIndex + 1 until i){

6. ased_of_pi = ased_of_pi + GetSED(Pj, PanchorIndex, Pi) //calculate Pj’s SED value

7. }

8. for(j = i + 1 until floatIndex){

9. ased_of_pi = ased_of_pi + GetSED(Pj, Pi, PfloatIndex) //calculate Pj’s SED value

10. }

11. if (ased_of_pi < minASEDError){

12. minASEDError = ased_of_pi

13. pointIndexWithMinimumASED = i

14. }

15. }

16. return pointIndexWithMinimumASED

Qingbin Meng, Xiaoqiang Yu, Chunlong Yao, Xu Li, Peng Li, and Xin Zhao

J Inf Process Syst, Vol.13, No.3, pp.533~545, June 2017 | 539

3.2 Time Complexity of LO-OPW-TR Algorithm

The proposed algorithm consists of three parts: LO-OPW-TR, findNewAnchorIndex and
findPointIndexWithMinimumASED, where findNewAnchorIndex is a sub_function of LO-OPW-TR
and findPointIndexWithMinimumASED is a sub_function of findNewAnchorIndex. First, we analyze
the time complexity of findPointIndexWithMinimumASED. As shown in Algorithm 3, the
findPointIndexWithMinimumASED function calculates the ASED values of all points between the
anchor point PanchorIndex and the float point PfloatIndex, and for calculate each point’s ASED value this
function need to calculate SED value (floatIndex – anchorIndex – 2) times. So, the total time cost of
findPointIndexWithMinimumASED is (floatIndex – anchorIndex – 1) × (floatIndex – anchorIndex – 2),
where floatIndex is the index of the current float point and anchorIndex is the index of the current
anchor point.

For findNewAnchorIndex function, if all SED values are smaller than the given threshold, the time
cost of this function is (floatIndex – anchorIndex – 1). If only the SED value of PanchorIndex-1 is greater than
the given threshold, the time cost of this function is (floatIndex – anchorIndex – 1) + (floatIndex –
anchorIndex – 1) × (floatIndex – anchorIndex – 2). So the worst-case running time of this function is
(floatIndex – anchorIndex – 1) + (floatIndex – anchorIndex – 1) × (floatIndex – anchorIndex – 2), i.e. the
function calculates SED values of all points between the anchor point PanchorIndex and the float point
PfloatIndex, then calls the findPointIndexWithMinimumASED function.

Given a trajectory T = {P1, P2, P3, ..., Pn-1, Pn} and its compressed representation T´ = {Pi1, Pi2, Pi3, ... ,
Pi[m-1], Pim} (1= i1 < ... < im = n), the number of anchor points founded by LO-OPW-TR algorithm is m-
2 (except the first point P1 and the last point Pn), and the maximum time to generate a single anchor
point Pic (1<c<m) is 1+2+3+ ... + (n-1-i[c-1]-1) + (n-i[c-1]-1)2, i.e. the proposed algorithm calls the
findNewAnchorIndex function in the order of findNewAnchorIndex(i[c-1], i[c-1]+2), findNew
AnchorIndex(i[c-1], i[c-1]+3), findNewAnchorIndex(i[c-1], i[c-1]+4),, findNewAnchorIndex(i[c-
1], n). The worst-case running time of proposed algorithm occurs if Pi1=P1, Pi2=P2, Pi3=P3,, Pi[m-1]=Pm-

1, Pim=Pn. In this situation, the maximum time costs of Pi2, Pi3, ..., Pi[m-1] are 1+2+3+ ... + (n-1-1-1)+(n-1-
1)2, 1+2+3+ ... + (n-1-2-1)+(n-2-1)2, ..., 1+2+3+ ... + (n-1-(m-2)-1)+(n-(m-2)-1)2. We assume that the
time cost of each point Pic (1<c<m) is as long as Pi2, the upper bound time of proposed algorithm is thus
0.5×(m-2)(3n-7)(n-2). So the worst-case running time of proposed algorithm is O(mn2).

In practice, the float point seldom always float to the last point in T (i.e., Pn). We assume that for
generate an single anchor point Pic (1<c<m), the proposed algorithm limits the maximum floating times
of the float point to d×L, where L is the average segment length (L=n/(m-1)) and d is a constant. Based
on this assumption, the maximum time cost to generate a single anchor point is 1+2+3+ ...
+d*L+(d*L+1)2, the total time cost of proposed algorithm is 0.5×(m-2)(d×L+1)(3×d×L+2), i.e., O(n2/m).
According to the paper [18], the segments generated by OPW algorithm are tightly clustered around
the average length, so this limit has little effect in practice.

4. Evaluations

In order to verify the performance of the proposed algorithm, we used Scala language to implement
LO-OPW-TR algorithm and other algorithms, and evaluated them by using GeoLife dataset [19-21].

Improvement of OPW-TR Algorithm for Compressing GPS Trajectory Data

540 | J Inf Process Syst, Vol.13, No.3, pp.533~545, June 2017

The Microsoft GeoLife dataset was obtained from 182 users over a period of five years (from April 2007
to August 2012), 73 users have labeled their trajectories with transportation mode, such as driving,
taking a bus, riding a bike and walking. GeoLife dataset contains 17,621 trajectories with a total distance
of 1,292,951 km and a total duration of 50,176 hours. The 91.5% of the trajectories are logged in a dense
representation, e.g., every 1–5 seconds or every 5–10 m per point. We selected three labeled trajectories
with the different transportation modes (walk, multi-modal, train) to evaluate our algorithm. Trajectory
one is labeled with walk, which contains 2,121 points, over a period of 1 hour 34 minutes (from 2011-
09-03 04:42:02 to 2011-09-03 06:16:53). Trajectory two contains three transportation modes (walk, bus,
train), 5,911 points, over a period of 3 hours 49 minutes (from 2008-06-18 12:10:33 to 2008-06-18
15:59:59). Trajectory three is labeled with train, which contains 2,621 points, over a period of 11 hours
24 minutes (from 2008-04-04 16:00:04 to 2008-04-05 03:24:30).

4.1 Evaluation Based on Error Metrics

Our evaluation dosen’t include the most algorithms in which temporal information is not be
considered. And the multiple error metrics are used in our evaluation, such as average SED error,
average spatial error, average speed error and average heading error. Given a trajectory T = {P1, P2,
P3, ..., Pn-1, Pn} and its compressed representation T´ = {Pi1, Pi2, Pi3, ... , Pi[m-1], Pim}, these error metrics are
defined as follows:

∑
=

=

n

iPorSpatialErrTTtialErrorAverageSpa
1i

)(
n

1
)',((9)

∑
=

=

n

i

iPSED
n

TTErrorAverageSED

1

)(
1

)',((10)

∑
−

=

Δ
=

1

1
))(pred),((succ

))(succ,)((pred
-)(

n

1
),(

'

'

n

i
ii

ii

i

PPt

PPdistance
PspeedT'TedErrorAverageSpe

TT'

T'T

 (11)

 AcuteAngel (angel) = if (angel >180) return 360 - angel else return angel (12)

∑
−

=

=

1

1

'))()(pred-)((
n

1
),(

n

i

iTiT'i PsuccPPheadingAcuteAngelT'TdingErrorAverageHea
 (13)

The trajectory compression algorithms are compared in terms of compression ratio in Fig. 3. The

results show that Before-OPW-TR and TD-TR have higher compression ratio than LO-OPW-TR, but
they also have larger SED errors (it is shown in Fig. 4). As seen in Fig. 3, under the same SED threshold,
the compression effect of trajectory one (walk transportation mode) is the most obvious. Trajectory
three (train transportation mode) has the minimum compression ratio compared with other trajectories.
Thus, it can be concluded that the trajectory’s sampling interval and speed have effect on compression
ratio. When a trajectory (such as trajectory three) which has high speed and long sampling interval is
compressed, a lower compression ratio will be received. On the contrary, when a trajectory (such as
trajectory one) which has low speed and short sampling interval is compressed, a higher compression
ratio will be received.

Qingbin Meng, Xiaoqiang Yu, Chunlong Yao, Xu Li, Peng Li, and Xin Zhao

J Inf Process Syst, Vol.13, No.3, pp.533~545, June 2017 | 541

 (a) (b) (c)
Fig. 3. The values of compression ratio under different SED thresholds. (a) Trajectory one, (b) trajectory
two, and trajectory three.

Because the large errors will be introduced for trajectory three when the compression ratio is too

high, the compression ratio was set from 5 to 15 for trajectory three in the following evaluation. In Fig.
4, we compared the performance of the algorithm in terms of average SED error. The results show that
our algorithm outperform other algorithms with the smallest average SED error.

 (a) (b) (c)
Fig. 4. Average SED errors. (a) Trajectory one, (b) trajectory two, and trajectory three.

 (a) (b) (c)
Fig. 5. Average spatial errors. (a) Trajectory one, (b) trajectory two, and trajectory three.

Before-OPW-TR LO-OPW-TR Normal-OPW-TR

SQUISH-E()µ TD-TR

10 20 30 40 50 60 70 80 90100

0

50

100

150

200

C
om

pr
es

si
on

 R
at

io

SED Threshold

10 20 30 40 50 60 70 80 90100

0

10

20

30

40

50

60

70

C
om

pr
es

si
on

 R
at

io
SED Threshold

10 20 30 40 50 60 70 80 90100

1

2

3

4

5

6

C
om

pr
es

si
on

 R
at

io

SED Threshold

Before -OPW-TR DouglasP eucker LO-OPW-TR Normal-OPW-TR

SQUISH-E()λ SQUISH-E()μ TD-TR

5 10 15 20 25 30

0

2

4

6

8

A
ve

ra
ge

 S
E

D
 E

rr
or

(m
et

er
s)

Compression Ratio
5 10 15 20 25 30

0

5

10

15

20

25

30

35

A
ve

ra
ge

 S
E

D
 E

rr
or

(m
et

er
s)

Compression Ratio
5 10 15

0

100

200

300

400

500

600

A
ve

ra
ge

 S
E

D
 E

rr
or

(m
et

er
s)

Compression Ratio

Before -OPW-TR DouglasP eucker LO-OPW-TR Normal-OPW-TR

SQUISH-E()λ SQUISH-E()μ TD-TR

5 10 15 20 25 30

0

1

2

3

4

5

A
ve

ra
ge

 S
pa

ti
al

 E
rr

or
(m

et
er

s)

Compression Ratio
5 10 15 20 25 30

0

1

2

3

4

5

6

A
ve

ra
ge

 S
pa

ti
al

 E
rr

or
(m

et
er

s)

Compression Ratio
5 10 15

0

50

100

150

200

250

A
ve

ra
ge

 S
pa

ti
al

 E
rr

or
(m

et
er

s)

Compression Ratio

Improvement of OPW-TR Algorithm for Compressing GPS Trajectory Data

542 | J Inf Process Syst, Vol.13, No.3, pp.533~545, June 2017

In Fig. 5, average spatial errors are evaluated under the different compression ratios. The results show
that LO-OPW-TR and DP outperform other algorithms with smaller spatial error. DP algorithm is
more accurate than LO-OPW-TR, however DP algorithm is not suitable for trajectory compression in
which trajectory’s temporal information is not be considered.

Fig. 6 shows the average speed errors of each algorithm over various compression ratios. TD-TR,
SQUISH-E(μ) and LO-OPW-TR are most accurate algorithms in terms of speed error. LO-OPW-TR
has the advantage of supporting both online and offline applications, while TD-TR and SQUISH-E(μ)
only can be used in offline applications.

In Fig. 7, average heading errors of each algorithm over various compression ratios are shown. The
best performance is exhibited by DP algorithm. The curve of our algorithm is in the middle.

 (a) (b) (c)
Fig. 6. Average speed errors. (a) Trajectory one, (b) trajectory two, and trajectory three.

 (a) (b) (c)
Fig. 7. Average heading errors. (a) Trajectory one, (b) trajectory two, and trajectory three.

5. Conclusion and Future Work

In this paper we have presented a new trajectory compression algorithm called LO-OPW-TR, in
which a new anchor point selection strategy based on ASED is proposed. By using this anchor point

Before -OPW-TR DouglasP eucker LO-OPW-TR Normal-OPW-TR

SQUISH-E()λ SQUISH-E()μ TD-TR

5 10 15 20 25 30

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 S
pe

ed
 E

rr
or

(m
/s

)

Compression Ratio

5 10 15 20 25 30

0

0.5

1

1.5

2

A
ve

ra
ge

 S
pe

ed
 E

rr
or

(m
/s

)

Compression Ratio

5 10 15

0.5

1

1.5

2

2.5

3

3.5

A
ve

ra
ge

 S
pe

ed
 E

rr
or

(m
/s

)

Compression Ratio

Before -OPW-TR DouglasP eucker LO-OPW-TR Normal-OPW-TR

SQUISH-E()λ SQUISH-E()μ TD-TR

5 10 15 20 25 30

25

30

35

40

45

50

55

A
ve

ra
ge

 H
ea

di
ng

 E
rr

or
(d

eg
re

e)

Compression Ratio

5 10 15 20 25 30

4

6

8

10

12

14

A
ve

ra
ge

 H
ea

di
ng

 E
rr

or
(d

eg
re

e)

Compression Ratio

5 10 15

7

8

9

10

11

12

13

14

A
ve

ra
ge

 H
ea

di
ng

 E
rr

or
(d

eg
re

e)

Compression Ratio

Qingbin Meng, Xiaoqiang Yu, Chunlong Yao, Xu Li, Peng Li, and Xin Zhao

J Inf Process Syst, Vol.13, No.3, pp.533~545, June 2017 | 543

selection strategy, the most appropriate anchor point can be founded. The algorithm can compress
trajectory data in process of receiving positioning points, so it has the advantage of supporting both
online and offline applications. The experimental results show that the algorithm can achieve the most
accurate compression in terms of SED error, and it also has the good performance in terms of speed
error and spatial error. In the future, one possible approach for improving this algorithm would be use
the heading information, which will further reduce the SED error and make heading error under control.

Acknowledgement

This work was supported by Dalian Municipal Science and Technology plan project of China (No.
2015A11GX011).

References

[1] Y. Zheng, Y. Chen, X. Xie, and W. Y. Ma, “GeoLife 2.0: a location-based social networking service,”
in Proceedings of 10th International Conference on Mobile Data Management: Systems, Services and Middleware,
Taipei, Taiwan, 2009, pp. 357-358.

[2] N. Meratnia and A. Rolf, “Spatiotemporal compression techniques for moving point objects,” in Proceedings of
the 9th International Conference on Extending Database Technology (EDBT), Crete, Greece, 2004, pp. 765-782.

[3] M. Morzy, “Mining frequent trajectories of moving objects for location prediction,” in Proceedings of 5th
International Conference on Machine Learning and Data Mining in Pattern Recognition, Leipzig, Germany, 2007,
pp. 667-680.

[4] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi, “Trajectory pattern mining,” in Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, CA, 2007, pp. 330-339.

[5] M. Chen, M. Xu, and P. Franti, “A fast O(N) multiresolution polygonal approximation algorithm for GPS
trajectory simplification,” IEEE Transactions on Image Processing, vol. 21, no. 5, pp. 2770-2785, 2012.

[6] Y. Zheng, D. K. He, W. F. Zhang, and X. H. Lu, “Efficient scheme for GPS data compression,” Zhongguo Tiedao
Kexue (China Railway Science), vol. 26, no. 3, pp. 134-138, 2005.

[7] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the number of points required to represent a
digitized line or its caricature,” Cartographica: The International Journal for Geographic Information and
Geovisualization, vol. 10, no. 2, pp. 112-122, 1973.

[8] J. C. Perez and E. Vidal, “Optimum polygonal approximation of digitized curves,” Pattern Recognition Letters,
vol. 15, no. 8, pp. 743-750, 1994.

[9] M. Salotti, “Improvement of Perez and Vidal algorithm for the decomposition of digitized curves into line
segments,” in Proceedings of 15th International Conference on Pattern Recognition, Barcelona, Spain, 2000, pp.
878-882.

[10] M. Salotti, “An efficient algorithm for the optimal polygonal approximation of digitized curves,” Pattern
Recognition Letters, vol. 22, no. 2, pp. 215-221, 2001.

[11] A. Kolesnikov and P. Franti, “A fast near-optimal min-# polygonal approximation of digitized curves,”
in Proceedings of International Conference on Automation, Control and Information Technology (ACIT’02),
Novosibirsk, Russia, 2002, pp. 418-422.

Improvement of OPW-TR Algorithm for Compressing GPS Trajectory Data

544 | J Inf Process Syst, Vol.13, No.3, pp.533~545, June 2017

[12] A. Kolesnikov and P. Franti, “Reduced-search dynamic programming for approximation of polygonal
curves,” Pattern Recognition Letters, vol. 24, no. 14, pp. 2243-2254, 2003.

[13] Y. Xuan and J. Xu, “GPS location data reducing based on turning point judgment method,” in Proceedings of
2011 Second International Conference on Mechanic Automation and Control Engineering (MACE), Hohhot,
China, 2011, pp. 7395-7398.

[14] Y. Chen, K. Jiang, Y. Zheng, C. Li, and N. Yu, “Trajectory simplification method for location-based social
networking services,” in Proceedings of the 2009 International Workshop on Location Based Social Networks,
Seattle, WA, 2009, pp. 33-40.

[15] M. Potamias, K. Patroumpas, and T. Sellis, “Sampling trajectory streams with spatiotemporal criteria,”
in Proceedings of 18th International Conference on Scientific and Statistical Database Management, Vienna,
Austria, 2006, pp. 275-284.

[16] J. Muckell, P. W. Olsen, J. H. Hwang, C. T. Lawson, and S. S. Ravi, “Compression of trajectory data: a
comprehensive evaluation and new approach,” GeoInformatica, vol. 18, no. 3, pp. 435-460, 2014.

[17] J. Muckell, J. H. Hwang, V. Patil, C. T. Lawson, F. Ping, and S. S. Ravi, “SQUISH: an online approach for GPS
trajectory compression,” in Proceedings of the 2nd International Conference on Computing for Geospatial
Research & Applications, Washington, DC, 2011.

[18] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “An online algorithm for segmenting time series,” in Proceedings
IEEE International Conference on Data Mining, Washington, DC, 2001, pp. 289-296.

[19] Y. Zheng, L. Zhang, X. Xie, and W. Y. Ma, “Mining interesting locations and travel sequences from GPS
trajectories,” in Proceedings of the 18th International Conference on World Wide Web, Madrid, Spain, 2009, pp.
791-800.

[20] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W. Y. Ma, “Understanding mobility based on GPS data,” in Proceedings of
the 10th International Conference on Ubiquitous Computing, Seoul, Korea, 2008, pp. 312-321.

[21] Y. Zheng, X. Xie, and W. Y. Ma, “GeoLife: a collaborative social networking service among user, location and
trajectory,” IEEE Data Engineering Bulletin, vol. 33, no. 2, pp. 32-39, 2010.

Qingbin Meng

He was born in Liaoning province, China, in 1991. He received his B.E. degree in
computer science and technology from Dalian Polytechnic University, Dalian, China,
in 2014. He is currently pursuing his M.E. degree in control science and engineering
at Dalian Polytechnic University, Dalian, China. His current research interests
include spatio-temporal data mining and machine learning.

Xiaoqiang Yu

He was born in Shandong province, China, in 1974. He received his B.E. degree in
computer science and technology from Northeast Normal University, China, in 1997,
and his M.E. degree in computer application technology from Dalian Maritime
University, China, in 2004. He is currently an associate professor and supervisor of
postgraduate students at Dalian Polytechnic University, Dalian, China. His current
research interests include enterprise information system, genetic algorithm and data
mining, etc.

Qingbin Meng, Xiaoqiang Yu, Chunlong Yao, Xu Li, Peng Li, and Xin Zhao

J Inf Process Syst, Vol.13, No.3, pp.533~545, June 2017 | 545

Chunlong Yao

He was born in Heilongjiang province, China, in 1971. He received his B.E. degree in
computer and its application from Northeast Heavy Machinery Institute, Qiqihar,
China, in 1994; his M.E. degree in computer application technology from Northeast
Heavy Machinery Institute, Qiqihar, China, in 1997; and his Ph.D. degree in computer
software and theory from Harbin Institute of Technology, Harbin, China, in 2005. He
is currently a professor and supervisor of postgraduate students at Dalian Polytechnic
University, Dalian, China. His current research interests include database and data
mining, and intelligent information system.

Xu Li

She was born in Jilin province, China, in 1980. She received her B.E. degree in
computer science and technology from University of science and technology Anshan,
China, in 2003, and her M.E. and Ph.D. degrees in computer application technology
from Yanshan University, China, in 2006 and 2010, respectively. She is currently an
associate professor and supervisor of postgraduate students at Dalian Polytechnic
University, Dalian, China. Her current research interests include natural language
processing, machine learning and data mining.

Peng Li

He was born in Liaoning province, China, in 1979. He received his B.E. degree in
communication engineering from Harbin Institute of Technology, China, in 2002; his
M.E. degree in communication and information system from Harbin Institute of
Technology, China, in 2004; and his Ph.D. degree in information and communication
engineering from Harbin Institute of Technology, China, in 2009. He is currently an
associate professor at Dalian Polytechnic University, Dalian, China. His research
interests include multi-hop networks and Internet of things.

Xin Zhao

He was born in Liaoning province, China, in 1968. He received his B.E. degree in
applied physics from Jilin University, China, in 1991; and his M.E. degree in condensed
matter physics from Jilin University, China, in 1997. He is currently a professor at
Dalian Polytechnic University, Dalian, China. His research interests include
optoelectronic materials and devices, and Internet of things.

