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Abstract 
Massive volumes of GPS trajectory data bring challenges to storage and processing. These issues can be 
addressed by compression algorithm which can reduce the size of the trajectory data. A key requirement for 
GPS trajectory compression algorithm is to reduce the size of the trajectory data while minimizing the loss of 
information. Synchronized Euclidean distance (SED) as an important error measure is adopted by most of the 
existing algorithms. In order to further reduce the SED error, an improved algorithm for open window time 
ratio (OPW-TR) called local optimum open window time ratio (LO-OPW-TR) is proposed. In order to make 
SED error smaller, the anchor points are selected by calculating point’s accumulated synchronized Euclidean 
distance (ASED). A variety of error metrics are used for the algorithm evaluation. The experimental results 
show that the errors of our algorithm are smaller than the existing algorithms in terms of SED and speed 
errors under the same compression ratio. 
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1. Introduction 

In recent years, with the number of GPS-enabled devices growing rapidly, demand of location-based 
service shows a significant growth trend. Through location-based service, users can upload, visualize, 
browse and share those trajectories [1]. From other traveler's trajectories, people can find travel routes 
and hot areas that interest them. However, these devices generate massive volumes of GPS trajectory 
data. A calculation in [2] shows that if we collect data in every 10 second, without any compression, 100 
MB of storage capacity is required to store the data for just 400 objects in a single day. This brings some 
problems in location-based service applications: (1) These GPS trajectory data will take up huge storage 
spaces. (2) These GPS trajectory data will cause network overhead. (3) It is difficult to find useful 
patterns from massive raw trajectory data [3,4]. (4) It will bring a heavy burden for a web browser while 
rendering these trajectories on the client side. It takes approximately 1 second to render just 1,000 
points [5]. To solve these problems, the trajectory compression technique is given increasing concern. 

According to the different categorization methods, trajectory compression can be classified as online 
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and offline compression or lossless and lossy compression. Online algorithm has the advantage of 
supporting real-time applications, which can compress trajectory data while retrieving points from 
trajectory. Offline algorithm begins to compress only after all points are obtained from the input 
trajectory. In general, offline algorithm has smaller errors than online algorithm. Lossless compression 
algorithm enables reconstruction the original data without information loss. Lossy compression will 
lose some information, and which cannot reconstruct the original data. Usually, the compression 
efficiency of lossless compression algorithm is not obvious. For example, the compression efficiency of 
lossless compression algorithm in which the local dictionary encoding and difference Huffman encoding 
are used, is 25% [6]. The main idea of lossy trajectory compression is to remove the redundant points. 
For example, a uniform linear motion trajectory can be represented by using just two points (first point 
and last point). The primary advantage of lossy compression is that it can significantly reduce the size of 
data while maintaining an acceptable error tolerance. Due to the advantage of lossy compression, this 
paper focuses on lossy compression of the trajectory data. 

Douglas-Peuker (DP) algorithm [7] compresses trajectory data through recursive calculating the 
Euclidean distance from point to beeline to decide which points should be retained. Optimal algorithms 
[8-10] aim at minimizing Euclidean distance error, which can achieve a minimum error by removing 
points in searching process. Due to the computational overhead of the optimal algorithms, near-
optimal algorithm is proposed. The algorithms proposed in [11,12] can achieve a faster search by 
reducing search space and using heuristic search. The paper [13] proposes an algorithm based on 
inflection point judgment method, in which the advantages and disadvantages of point by point 
judgment method and multi-point joint judgment method are analyzed. Trajectory simplification (TS) 
algorithm [14] uses heading change degree of the point and distance between this point and its most 
adjacent neighbors to weight importance of the point. The points with high weight will be retained in 
final compressed trajectory. These algorithms focus only on maintaining the shape of the trajectory, 
there is a lack of consideration of temporal information. However, the GPS trajectory contains both 
spatial and temporal information. A number of algorithms have been proposed with temporal 
information considered. Top-down time-ratio (TD-TR) [2] is an improvement algorithm of DP, which 
uses SED instead of Euclidean distance. Compared to DP, TD-TR has the benefit of taking temporal 
information into account. Open window time ratio (OPW-TR) [2] algorithm calculates each point’s 
SED between the anchor point and the float point. If all the SED values are less than a given threshold, 
then the float point moves forward one point. Otherwise, a new anchor point will be chosen out. Based 
on the different anchor point selection strategies, OPW-TR has two modes called Before-OPW-TR and 
Normal-OPW-TR. Threshold-guided algorithm [15] compresses trajectory by constructing a safe area 
using moving object’s speed and direction, if an incoming positioning point lies in the safe area, then 
this point contributes little information and can be discarded without significant loss in accuracy. 
Spatial QUalIty Simplification Heuristic – extended (SQUISH-E) algorithm [16] is an extended version 
of SQUISH [17], SQUISH-E compresses trajectory data by removing points of the lowest priority from 
the priority queue while ensuring that SED error is within a user-specified bound. According to 
parameters setting, SQUISH-E can be divided into SQUISH-E(μ) and SQUISH-E(λ). 

Because online algorithm has the advantage of supporting real-time applications, an online trajectory 
compression algorithm is proposed in this paper. The algorithm compresses trajectory data by calculating 
point’s accumulated synchronized Euclidean distance (ASED). In this algorithm, the redundant points 
will be discarded to reduce storage spaces and improve the efficiency of data processing and transmitting. 
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The remainder of this paper is organized as follows. In the next section, some definitions are given. In 
Section 3, our LO-OPW-TR (local optimum open window time ratio) algorithm is described in detail. 
In Section 4, some results with different error measurements are shown. Finally, paper conclusion and 
future work are discussed in Section 5. 

 
 

2. Definitions 

Definition 1. GPS trajectory: A GPS trajectory T of length n is a temporally ordered sequence of 
positioning points {P1, P2, P3, ..., Pn-1, Pn}, each GPS point contains coordinates x, y and timestamp t. 

Definition 2. Trajectory compression: Given a GPS trajectory T = {P1, P2, P3, ..., Pn-1, Pn}, the 
intention of trajectory compression is to seek a set of temporally ordered positioning points T´ (a subset 
of T), i.e., T´ = {Pi1, Pi2, Pi3, ... , Pi[m-1], Pim}, where 1= i1 < ... < im = n. 

Definition 3. Spatial error and Synchronized Euclidean Distance (SED) [16]: Given a trajectory T 
and its compressed representation T´, the spatial error of T´ with respect to point Pi in T is defined as 
the distance between Pi(xi, yi, ti) and its estimation P´i(x´i, y´i, ti). If T´ contains Pi , then P´i = Pi. 
Otherwise, the closest point to Pi is defined as P´i which is along the line between predT´(Pi) and 
succT´(Pi), where predT´(Pi) and succT´(Pi) denote Pi´s closest predecessor and successor among the 
points in T´. The SED [15] of point Pi is also defined as the distance between Pi(xi, yi, ti) and its 
estimation P´i(x´i, y´i, ti), the difference is that the value of x´i  and y´i are calculated by using formulae 
(3) and (4), where Ps(xs, ys, ts)=predT´(Pi) and Pe(xe, ye, te)=succT´(Pi). 

For instance, in Fig. 1(a), the spatial errors of P1, P4, P6 are zeros and the spatial error of P2 is the 
perpendicular distance from P2 to line 41PP . In Fig. 1(b), the SED values of P1, P4, P6 are zeros and the 
SED value of P2 is the distance between P2 and P´2. 
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 (a) (b)  

Fig. 1. Spatial error (a) and SED (b) are illustrated by using T = {P1, P2, P3, P4, P5, P6} and T´ = {P1, P4, P6}.  
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Definition 4. Speed and heading: Given a trajectory T = {P1, P2, P3, ..., Pn-1, Pn}, for any point Pi in the 
trajectory T (except the last point Pn), we can calculate Pi’s heading and speed through formulae (5) and 
(6). 

 

1+= iii PPh                                                                           (5) 
 

)()( 11 iiiii tt/,PPDistancespeed −= ++                                          (6) 
 

Definition 5. Compression ratio: Given a GPS trajectory T = {P1, P2, P3, ... , Pn-1, Pn} and its 
compressed representation T´ = {Pi1, Pi2, Pi3, ... , Pi[m-1], Pim}, the compression ratio CR is defined as 
follow. 

 

m
nCR =                                                                       (7) 

 

 

3. LO-OPW-TR Algorithm 

Given a trajectory T and a SED threshold ε, OPW-TR algorithm starts by defining a segment between 
the first point P1 (the anchor point) and the third point P3 (the float point). Then the algorithm 
calculates all the SED values of the points between the anchor point and the float point. As long as all 
the SED values are smaller than ε, an attempt is made to move the float point one point forward in 
trajectory T. When the SED threshold ε is exceeded, two strategies can be applied: either the point 
causing the threshold violation becomes the new anchor point (Normal-OPW-TR), or the point just 
before it becomes the new anchor point (Before-OPW-TR). 

The above process will be repeated until the entire trajectory has been transformed into a piecewise 
linear approximation. By modifying anchor point selection strategy, a new algorithm called LO-OPW-
TR is proposed. This algorithm selects new anchor point by calculating point’s ASED, the point with 
the minimum ASED value becomes the new anchor point. For each point Pi between the anchor point 
(Pa) and the float point (Pb), Pi’s ASED value can be calculated by using formula (8). 
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Fig. 2 gives an example of the anchor point selection, in which P1 is the anchor point and P9 is the 

float point. First, the SED values of P2, P3, P4, P5, P6, P7, P8 are calculated, and the SED values of P4, P5, P6 
are exceed ε. Then, the ASED values of P2, P3, P4, P5, P6, P7, P8 are calculated, due to P6 has the minimum 
ASED value, P6 and P8 become new anchor point and new float point, P2, P3, P4, P5 are removed from T. 
Fig. 2 shows that the most appropriate anchor point is selected by using new anchor point selection 
strategy.  
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 (a) (b)  

         

 (c) (d)  

Fig. 2. An example of anchor point selection. (a) SEDs of P4, P5, P6 are exceed ε, (b) calculate ASED of 
P4, (c) calculate ASED of P6, and (d) P6, P8 become anchor point and float point. 

 

3.1 Pseudo-Code of LO-OPW-TR Algorithm 
 

Algorithm 1 describes the details of LO-OPW-TR algorithm. At first P1 and P3 are selected as the 
anchor point and the float point (lines 2 and 3). Then the algorithm calculates all the SED values of the 
points between the anchor point and the float point (line 7). As long as all the SED values are smaller 

 

Algorithm 1. LO-OPW-TR(T, ε) 

INPUT : 

    T = {P1, P2, ... , Pn}                                    //original trajectory 

    ε                                                                 //SED error tolerance 

OUTPUT :  Tout = {P’1, P’2, ... , P’m}           //compressed trajectory, P’1=P1,P’m=Pn ,m<n 

1.   Tout = [] 

2.   anchorIndex = 1 

3.   floatIndex = 3 

4.   Tout  =  Tout  Append  P1  

5.   while (floatIndex  < = n)  

6.   { 

7.       index = findNewAnchorIndex(anchorIndex, floatIndex)  

8.       if (index != -1) {                         //new anchor point and new float point are founded 

9.            Tout  =  Tout  Append  Pindex 

10.          anchorIndex = index 

11.          floatIndex = anchorIndex + 2 

12.      } else {                                         //all SED values are smaller than ε 

13.          floatIndex += 1 

14.      } 

15.  } 

16.  if (Tout  not contain Pn) 

17.  { 

18.      Tout  =  Tout  Append  Pn 

19.  } 

20.  return Tout 
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than ε, an attempt is made to move the float point one point forward (line 13). Otherwise, Pindex becomes 
the new anchor point and Pindex+2 becomes the new float point (lines 10 and 11). When all the points in T 
are processed, the compressed trajectory Tout will be returned (line 20). 

Algorithm 2 provides the detailed description of findNewAnchorIndex algorithm. This algorithm 
calculates SED value of each point between the anchor point and the float point (line 3). If all the SED 
values are smaller than ε, -1 will be returned (line 10). Otherwise, the new anchor point’s index will be 
returned (line 7). 

 
Algorithm 2. findNewAnchorIndex(anchorIndex, floatIndex) 

INPUT : 

    anchorIndex                 //anchor point’s index 

    floatIndex                    //float point’s index 

OUTPUT :  newAnchorIndex      //index of the new anchor point 

1.   newAnchorIndex = -1 

2.   for (i = anchorIndex + 1 until floatIndex) { 

3.       sed = GetSED(Pi, PanchorIndex, PfloatIndex)  //calculate Pi’s SED value 

4.       if (sed > ε){ 

5.           //find the point with the minimum ASED (use formula (8), and return the point’s index 

6.           newAnchorIndex = findPointIndexWithMinimumASED(anchorIndex, floatIndex) 

7.           return newAnchorIndex 

8.       } 

9.   } 

10.  return newAnchorIndex 

 
Algorithm 3 provides a detailed description of findPointIndexWithMinimumASED algorithm. 

This algorithm calculates each point’s ASED value between the anchor point and the float point, and 
returns the index of the point which has the minimum ASED value. Given the anchor point and the 
float point, Pi’s (anchorIndex<i<floatIndex) ASED value can be calculated by using formula (8) (lines 
4 to 10). 

 
Algorithm 3. findPointIndexWithMinimumASED(anchorIndex, floatIndex) 

INPUT : 
    anchorIndex                //anchor point’s index 

    floatIndex                   //float point’s index 

OUTPUT :  pointIndexWithMinimumASED //index of the point which has the minimum ASED  

1.     pointIndexWithMinimumASED  = -1 

2.     minASEDError = Double.MaxValue 

3.     for (i = anchorIndex + 1 until floatIndex) { 

4.         ased_of_pi = 0 

5.         for(j = anchorIndex + 1 until i){ 

6.             ased_of_pi = ased_of_pi + GetSED(Pj, PanchorIndex, Pi)  //calculate Pj’s SED value 

7.         } 

8.         for(j = i + 1 until floatIndex){ 

9.             ased_of_pi = ased_of_pi + GetSED(Pj, Pi, PfloatIndex)  //calculate Pj’s SED value 

10.       } 

11.       if (ased_of_pi < minASEDError ){ 

12.           minASEDError  = ased_of_pi 

13.           pointIndexWithMinimumASED  = i 

14.       } 

15.   } 

16.  return pointIndexWithMinimumASED 
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3.2 Time Complexity of LO-OPW-TR Algorithm 
 

The proposed algorithm consists of three parts: LO-OPW-TR, findNewAnchorIndex and 
findPointIndexWithMinimumASED, where findNewAnchorIndex is a sub_function of LO-OPW-TR 
and findPointIndexWithMinimumASED is a sub_function of findNewAnchorIndex. First, we analyze 
the time complexity of findPointIndexWithMinimumASED. As shown in Algorithm 3, the 
findPointIndexWithMinimumASED function calculates the ASED values of all points between the 
anchor point PanchorIndex and the float point PfloatIndex, and for calculate each point’s ASED value this 
function need to calculate SED value (floatIndex – anchorIndex – 2) times. So, the total time cost of 
findPointIndexWithMinimumASED is (floatIndex – anchorIndex – 1) × (floatIndex – anchorIndex – 2), 
where floatIndex is the index of the current float point and anchorIndex is the index of the current 
anchor point. 

For findNewAnchorIndex function, if all SED values are smaller than the given threshold, the time 
cost of this function is (floatIndex – anchorIndex – 1). If only the SED value of PanchorIndex-1 is greater than 
the given threshold, the time cost of this function is (floatIndex – anchorIndex – 1) + (floatIndex – 
anchorIndex – 1) × (floatIndex – anchorIndex – 2). So the worst-case running time of this function is 
(floatIndex – anchorIndex – 1) + (floatIndex – anchorIndex – 1) × (floatIndex – anchorIndex – 2), i.e. the 
function calculates SED values of all points between the anchor point PanchorIndex and the float point 
PfloatIndex, then calls the findPointIndexWithMinimumASED function. 

Given a trajectory T = {P1, P2, P3, ..., Pn-1, Pn} and its compressed representation T´ = {Pi1, Pi2, Pi3, ... , 
Pi[m-1], Pim} (1= i1 < ... < im = n), the number of anchor points founded by LO-OPW-TR algorithm is m-
2 (except the first point P1 and the last point Pn), and the maximum time to generate a single anchor 
point Pic (1<c<m) is 1+2+3+ ... + (n-1-i[c-1]-1) + (n-i[c-1]-1)2, i.e. the proposed algorithm calls the 
findNewAnchorIndex function in the order of findNewAnchorIndex(i[c-1], i[c-1]+2), findNew 
AnchorIndex(i[c-1], i[c-1]+3), findNewAnchorIndex(i[c-1], i[c-1]+4), ......, findNewAnchorIndex(i[c-
1], n). The worst-case running time of proposed algorithm occurs if Pi1=P1, Pi2=P2, Pi3=P3, ....., Pi[m-1]=Pm-

1, Pim=Pn. In this situation, the maximum time costs of Pi2, Pi3, ..., Pi[m-1] are 1+2+3+ ... + (n-1-1-1)+(n-1-
1)2, 1+2+3+ ... + (n-1-2-1)+(n-2-1)2, ..., 1+2+3+ ... + (n-1-(m-2)-1)+(n-(m-2)-1)2. We assume that the 
time cost of each point Pic (1<c<m) is as long as Pi2, the upper bound time of proposed algorithm is thus 
0.5×(m-2)(3n-7)(n-2). So the worst-case running time of proposed algorithm is O(mn2). 

In practice, the float point seldom always float to the last point in T (i.e., Pn). We assume that for 
generate an single anchor point Pic (1<c<m), the proposed algorithm limits the maximum floating times 
of the float point to d×L, where L is the average segment length (L=n/(m-1)) and d is a constant. Based 
on this assumption, the maximum time cost to generate a single anchor point is 1+2+3+ ... 
+d*L+(d*L+1)2, the total time cost of proposed algorithm is 0.5×(m-2)(d×L+1)(3×d×L+2), i.e., O(n2/m). 
According to the paper [18], the segments generated by OPW algorithm are tightly clustered around 
the average length, so this limit has little effect in practice. 

 
 

4. Evaluations 

In order to verify the performance of the proposed algorithm, we used Scala language to implement 
LO-OPW-TR algorithm and other algorithms, and evaluated them by using GeoLife dataset [19-21]. 
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The Microsoft GeoLife dataset was obtained from 182 users over a period of five years (from April 2007 
to August 2012), 73 users have labeled their trajectories with transportation mode, such as driving, 
taking a bus, riding a bike and walking. GeoLife dataset contains 17,621 trajectories with a total distance 
of 1,292,951 km and a total duration of 50,176 hours. The 91.5% of the trajectories are logged in a dense 
representation, e.g., every 1–5 seconds or every 5–10 m per point. We selected three labeled trajectories 
with the different transportation modes (walk, multi-modal, train) to evaluate our algorithm. Trajectory 
one is labeled with walk, which contains 2,121 points, over a period of 1 hour 34 minutes (from 2011-
09-03 04:42:02 to 2011-09-03 06:16:53). Trajectory two contains three transportation modes (walk, bus, 
train), 5,911 points, over a period of 3 hours 49 minutes (from 2008-06-18 12:10:33 to 2008-06-18 
15:59:59). Trajectory three is labeled with train, which contains 2,621 points, over a period of 11 hours 
24 minutes (from 2008-04-04 16:00:04 to 2008-04-05 03:24:30). 

 

4.1 Evaluation Based on Error Metrics 
 

Our evaluation dosen’t include the most algorithms in which temporal information is not be 
considered. And the multiple error metrics are used in our evaluation, such as average SED error, 
average spatial error, average speed error and average heading error. Given a trajectory T = {P1, P2, 
P3, ..., Pn-1, Pn} and its compressed representation T´ = {Pi1, Pi2, Pi3, ... , Pi[m-1], Pim}, these error metrics are 
defined as follows: 
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        AcuteAngel (angel) = if (angel >180) return 360 - angel else return angel                      (12) 
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The trajectory compression algorithms are compared in terms of compression ratio in Fig. 3. The 

results show that Before-OPW-TR and TD-TR have higher compression ratio than LO-OPW-TR, but 
they also have larger SED errors (it is shown in Fig. 4). As seen in Fig. 3, under the same SED threshold, 
the compression effect of trajectory one (walk transportation mode) is the most obvious. Trajectory 
three (train transportation mode) has the minimum compression ratio compared with other trajectories. 
Thus, it can be concluded that the trajectory’s sampling interval and speed have effect on compression 
ratio. When a trajectory (such as trajectory three) which has high speed and long sampling interval is 
compressed, a lower compression ratio will be received. On the contrary, when a trajectory (such as 
trajectory one) which has low speed and short sampling interval is compressed, a higher compression 
ratio will be received. 
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 (a) (b) (c)  
Fig. 3. The values of compression ratio under different SED thresholds. (a) Trajectory one, (b) trajectory 
two, and trajectory three. 

 
Because the large errors will be introduced for trajectory three when the compression ratio is too 

high, the compression ratio was set from 5 to 15 for trajectory three in the following evaluation. In Fig. 
4, we compared the performance of the algorithm in terms of average SED error. The results show that 
our algorithm outperform other algorithms with the smallest average SED error. 

 

 

    

 (a) (b) (c)  
Fig. 4. Average SED errors. (a) Trajectory one, (b) trajectory two, and trajectory three. 
 

 

 

    

 (a) (b) (c)  
Fig. 5. Average spatial errors. (a) Trajectory one, (b) trajectory two, and trajectory three. 
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In Fig. 5, average spatial errors are evaluated under the different compression ratios. The results show 
that LO-OPW-TR and DP outperform other algorithms with smaller spatial error. DP algorithm is 
more accurate than LO-OPW-TR, however DP algorithm is not suitable for trajectory compression in 
which trajectory’s temporal information is not be considered. 

Fig. 6 shows the average speed errors of each algorithm over various compression ratios. TD-TR, 
SQUISH-E(μ) and LO-OPW-TR are most accurate algorithms in terms of speed error. LO-OPW-TR 
has the advantage of supporting both online and offline applications, while TD-TR and SQUISH-E(μ) 
only can be used in offline applications.  

In Fig. 7, average heading errors of each algorithm over various compression ratios are shown. The 
best performance is exhibited by DP algorithm. The curve of our algorithm is in the middle. 

 

 

     

 (a) (b) (c)  
Fig. 6. Average speed errors. (a) Trajectory one, (b) trajectory two, and trajectory three. 

 

 

 

    

 (a) (b) (c)  
Fig. 7. Average heading errors. (a) Trajectory one, (b) trajectory two, and trajectory three. 

 
 

5. Conclusion and Future Work 
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selection strategy, the most appropriate anchor point can be founded. The algorithm can compress 
trajectory data in process of receiving positioning points, so it has the advantage of supporting both 
online and offline applications. The experimental results show that the algorithm can achieve the most 
accurate compression in terms of SED error, and it also has the good performance in terms of speed 
error and spatial error. In the future, one possible approach for improving this algorithm would be use 
the heading information, which will further reduce the SED error and make heading error under control. 
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