
- 188 -

Maze Solving Algorithm
Gan Zhen Ye , Dae-Ki Kang1)

Div. of Computer and Information Engineering, Dongseo University

Email : zy_gan@msn.com, dkkang@dongseo.ac.kr

ABSTRACT

Path finding and path planning is crucial in today’s world where time is an extremely valuable element. It is easy

to plan the optimum path to a destination if provided a map but the same cannot be said for an unknown and

unexplored environment. It will surely be exhaustive to search and explore for paths to reach the destination, not to

mention planning for the optimum path. This is very much similar to finding for an exit of a maze.

A very popular competition designed to tackle the maze solving ability of autonomous called Micromouse will be

used as a guideline for us to design our maze. There are numerous ways one can think of to solve a maze such as

Dijkstra’s algorithm, flood fill algorithm, modified flood fill algorithm, partition-central algorithm [1], and potential maze

solving algorithm [2]. We will analyze these algorithms from various aspects such as maze solving ability,

computational complexity, and also feasibility to be implemented.

Keywords

Autonomous robots, Maze solving algorithm, Micromouse

I. Introduction

Path finding and path planning is crucial in
today’s world where time is an extremely valuable
element. It is easy to plan the optimum path to a
destination if provided a map but the same cannot
be said for an unknown and unexplored
environment. It will surely be exhaustive to search
and explore for paths to reach the destination, not
to mention planning for the optimum path. This is
very much similar to finding for an exit of a
maze.

A very popular competition designed to tackle
the maze solving ability of autonomous called
Micromouse will be used as a guideline for us to
design our maze. There are numerous ways one
can think of to solve a maze such as Dijkstra’s
algorithm, flood fill algorithm, modified flood fill
algorithm, partition-central algorithm [1], and
potential maze solving algorithm [2]. We will
analyze these algorithms from various aspects
such as maze solving ability, computational
complexity, and also feasibility to be implemented.

II. Literature Review

2.1 Dijkstra’s Algorithm

Dijkstra’s algorithm finds the shortest path to
solve the maze from a directed graph of a given

1) Corresponding author

set of nodes. The input of this algorithm consists
of a weighted directed graph and the starting
vertex. All vertexes in the graph are given a label
and the edge of one vertex (vertex a) to another
vertex (vertex b) holds the cost (edge(a,b)) of
moving to vertex b from vertex a. This algorithm
calculates the shortest path or minimum cost from
the starting vertex to all other vertexes in the
graph. The algorithm in steps is shown below:

Step 1: Start “Ready set” with starting node
Set start distance to 0, dist[s] =0;
Others to infinite: dist[i]= (for i s);
Set Ready = { }.

Step 2: Select node with shortest distance from
the starting point that is not in Ready set

Ready = Ready + {n}.
 Step 3: Compute distances to all of its neighbors.
For each neighbor node m of n

Check if dist[n] +edge (n, m) < dist[m]
If yes, dist[m] = dist[n] +edge (n, m);

Step 4: Store path predecessors.
pre[m] = n;

Step 5: Add current node to “Ready set”.
Step 6: Check if any node is left, if yes go to
Step 2
Step 7: end.

Maze Solving Algorithm

- 189 -

Fig. 1 Nodes perceived by Dijkstra’s algorithm

2.2 Flood Fill Algorithm

The basic idea behind this algorithm is to
imagine someone pouring water down from the
starting cell of the maze. The water will
eventually flood the whole maze except the exit of
the maze itself. The solution is to follow the path
where the water is decreasing in quantity. Each
cell in the maze is assigned a value which
indicates its distance from the destination cell and
the goal will have value of 0. The solution of the
maze is to follow the path of decreasing values
from the starting position. The pseudo code to
implement this method is as below:

Let variable Level = 0
Initialize the array [A] so that all values = 255
Place the destination cell in an array called stack1
Initialize a second array called stack2
Start:
Repeat the following instructions until stack1is
empty:
{
 Remove a cell from stack1
 If DistanceValue(cell) = 255 then
 let DistanceValue(cell) = Level and
 place all open neighbours of cell into stack2
 End If
}
The array stack1is now empty.
Is the array stack2 empty?
No ->
{
 Level = Level +1,

 Let stack1= stack2,
 Initialize stack1,
 Go back to "Start:"
}

Fig. 2 Maze with flooded cell values

2.3 Modified Flood Fill Algorithm

This algorithm functions almost the same way
with the normal flood fill algorithm. The difference
is that the cell values are assigned manually
before exploring the maze using the same manner
of that in flood fill algorithm. The main difference
of this method from flood fill algorithm this
method only updates the cell values when
necessary after each exploration and not all cells
values are being updated every time. The
algorithm will be explained in more detailed with
the aid of the pseudo code below:

Creates a stack “Stack1” and make sure that the
stack is empty
Push current cell robot is in onto Stack1
Repeat till stack is empty:

{
Pop a cell from Stack1
If distance value in this cell not equal to

1 + minimum value of its open neighbor and cell
is not destination cell,

Yes:
Change cell value to 1 + minimum value

of its open neighbor and Push all open neighbours
of cell onto Stack1

No:
Do nothing

}

한국해양정보통신학회 2011 추계종합학술대회

- 190 -

2.4 Partition-central Algorithm

This algorithm is proposed by Jianping Cai et al
[8]. This proposed method is used to explore the
maze to find the shortest solution path of the
maze. This exploring method involves partitioning
the maze into several parts and different
navigating rules are applied to different part of the
maze. The divisions of the map into several
partitions can be viewed in Figure 3 below.

Fig. 3 Maze partition division

Referring to figure 3 above, the maze is divided
into 12 partitions labeled in the diagram with P-1
to P-12. Take P-1 for example, if the mouse is in
P-1 with its absolute direction heading north, it
will follow the center-right rule. This means that
whenever possible the mouse will tries to move
forward along the path. When it reaches a
T-junction, the mouse will choose to travel right
instead of taking a left-turn. Once the mouse
changes its direction it will then obey another set
of rules based on its absolute direction and also
the partition the mouse is located in the maze.

2.5 Potential Maze Solving Algorithm

A new way to solve a micromouse maze is
proposed by Wyard and Meng [9]. The basic idea
of this algorithm is somewhat similar to flood fill
algorithm in the sense of assigning different
values to different cells where the values

represents distance from the goal position. The
difference in this algorithm is that the values
assigned are potential values obtained from the
means of the sensor’s receiver. The implementation
method of this algorithm is explained in the form
of flow chart in figure 4 below.

Fig. 4 Maze solving flowchart using Potential Maze
Solving Algorithm

III. Discussion

All algorithms reviewed are able to generate
shortest path to the goal. However, some of it has
certain drawbacks. Dijkstra’s algorithm and
Partition-central algorithm requires thorough
exploration of the maze, which can be time
consuming and lack of robustness. Some of the
cells in the maze might not even be accessible.
Furthermore, partition-central algorithm has a
different set of rules to be applied depending on
the mouse’s location in the maze. This means that
it requires much memory to store those rules and
also the computation time to check which rules to
be applied every time the mouse needs to make a
decision Flood-fill algorithm can calculate the
shortest path but each and every time the mouse
moves into a new cell, the entire cell’s value are

Maze Solving Algorithm

- 191 -

required to be updated even if there might not be
any changes of the cell’s values. This is
considered as a waste of time. This drawback is
however solved in modified flood fill algorithm. As
for the Potential maze solving algorithm, this
method very much depends on the sensor’s ability
to detect accurately and also is limited by the
sensor’s sensing range. This method selects the
path that allows the mouse to travel the furthest
as its next direction. This might not necessarily
leads the mouse closer to the goal.

IV. Conclusion

Having considered the drawbacks of each
algorithm, we conclude that modified flood fill
algorithm is the best algorithm to be applied in a
Micromouse maze solving competition for its
robustness and accuracy.

Acknowledgment

This research has been conducted in the project,
“A study on HTML & Javascript engine analysis
and their extension plan”, which has been
commissioned by Electronics and
Telecommunications Research Institute’s project
“Development of collaboration service technologies
among smart screens using dynamic relocation of
Web fusion contents” in 2011.

Reference

[1] Jianping Cai, Xuting Wan, Meimei Huo, and
Jianzhong Wu, “An Algorithm of Micromouse
Maze Solving,” in 2010 10th IEEE International
Conference on Computer and Information
Technology (CIT 2010), June 2010, pp.
1995-2000.

[2] Wyard-Scott and H.M. Meng, “A Potential
Maze Solving Algorithm for a Micromouse
Robot,” in Proc. IEEE Pacific Rim Conference
on Communications, Computers, and Signal
Processing, May 1995, pp. 614-618.

[3] Swati Mishra, Pankaj Bande, “Maze Solving
Algorithms for Micro Mouse,” in Proc. of 2008
IEEE International Conference on Signal Image
Technology and Internet Based Systems, Nov.
2008, pp. 86-93.

