• 제목/요약/키워드: Inflammatory diseases

검색결과 2,348건 처리시간 0.03초

Potential drug targets in the GPCR-$G{\alpha}_{12}/G{\alpha}_{13}$ signaling pathways

  • Kim, Sang-Geon
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2008년도 Proceedings of the Convention
    • /
    • pp.89-99
    • /
    • 2008
  • GPCRs are large families of cell surface receptors that transmit signals through conformational changes upon ligand activation and an interaction with the heterotrimeric G-proteins. GPCRs regulate the cell-signaling pathways and participate in the regulation of physiological processes through the G-proteins defined by their ${\alpha}$ subunits. A family of 20 G protein-coupled receptors (GPCRs) that provide a large class of tractable drug targets for new anti-inflammatory drugs and, in certain instances, for the treatment of the inflammatory indications such as atherosclerosis, rhinitis, asthma, pulmonary disease and arthritis. In view of the important findings showing that $G{\alpha}_{12}/G{\alpha}_{13}$ regulate the various cellular processes such as actin-stress fiber formation, neurite retraction, platelet aggregation, gene induction, and apoptosis, we became interested in whether, after coupling to the activated GPCRs, the G-proteins and their downstream molecules might be involved in the pathologic processes of chronic inflammatory diseases (e.g., liver fibrosis). In this symposium, the possible link of the G-proteins with the pathophysiology will be discussed with the aim of finding potential new drug targets.

  • PDF

Regulation by Reversible S-Glutathionylation: Molecular Targets Implicated in Inflammatory Diseases

  • Shelton, Melissa D.;Mieyal, John J.
    • Molecules and Cells
    • /
    • 제25권3호
    • /
    • pp.332-346
    • /
    • 2008
  • S-glutathionylation is a reversible post-translational modification that continues to gain eminence as a redox regulatory mechanism of protein activity and associated cellular functions. Many diverse cellular proteins such as transcription factors, adhesion molecules, enzymes, and cytokines are reported to undergo glutathionylation, although the functional impact has been less well characterized. De-glutathionylation is catalyzed specifically and efficiently by glutaredoxin (GRx, aka thioltransferase), and facile reversibility is critical in determining the physiological relevance of glutathionylation as a means of protein regulation. Thus, studies with cohesive themes addressing both the glutathionylation of proteins and the corresponding impact of GRx are especially useful in advancing understanding. Reactive oxygen species (ROS) and redox regulation are well accepted as playing a role in inflammatory processes, such as leukostasis and the destruction of foreign particles by macrophages. We discuss in this review the current implications of GRx and/or glutathionylation in the inflammatory response and in diseases associated with chronic inflammation, namely diabetes, atherosclerosis, inflammatory lung disease, cancer, and Alzheimer's disease, and in viral infections.

Inflammasomes: Molecular Regulation and Implications for Metabolic and Cognitive Diseases

  • Choi, Alexander J.S.;Ryter, Stefan W.
    • Molecules and Cells
    • /
    • 제37권6호
    • /
    • pp.441-448
    • /
    • 2014
  • Inflammasomes are specialized signaling platforms critical for the regulation of innate immune and inflammatory responses. Various NLR family members (i.e., NLRP1, NLRP3, and IPAF) as well as the PYHIN family member AIM2 can form inflammasome complexes. These multiprotein complexes activate inflammatory caspases (i.e., caspase-1) which in turn catalyze the maturation of select pro-inflammatory cytokines, including interleukin (IL)-$1{\beta}$ and IL-18. Activation of the NLRP3 inflammasome typically requires two initiating signals. Toll-like receptor (TLR) and NOD-like receptor (NLR) agonists activate the transcription of pro-inflammatory cytokine genes through an NF-${\kappa}B$-dependent priming signal. Following exposure to extracellular ATP, stimulation of the P2X purinoreceptor-7 ($P2X_7R$), which results in $K^+$ efflux, is required as a second signal for NLRP3 inflammasome formation. Alternative models for NLRP3 activation involve lysosomal destabilization and phagocytic NADPH oxidase and /or mitochondria-dependent reactive oxygen species (ROS) production. In this review we examine regulatory mechanisms that activate the NLRP3 inflammasome pathway. Furthermore, we discuss the potential roles of NLRP3 in metabolic and cognitive diseases, including obesity, type 2 diabetes mellitus, Alzheimer's disease, and major depressive disorder. Novel therapeutics involving inflammasome activation may result in possible clinical applications in the near future.

Fractionated Coptis chinensis Extract and Its Bioactive Component Suppress Propionibacterium acnes-Stimulated Inflammation in Human Keratinocytes

  • Lee, Jin Wook;Kang, Yoon Joong;Choi, Hyun Kyung;Yoon, Young Geol
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권6호
    • /
    • pp.839-848
    • /
    • 2018
  • Coptis chinensis (CC) is widely used in Asian countries to treat inflammatory diseases. We investigated the anti-inflammatory activity of the aqueous fraction separated from CC extract and of berberine, its key bioactive component, in human keratinocytes and the possible molecular mechanisms underlying this. Treating HaCaT keratinocytic cells with heat-killed Propionibacterium acnes induced nitric oxide and proinflammatory cytokine (e.g., tumor necrosis $factor-{\alpha}$, interleukin $(IL)-1{\beta}$, and IL-8) production and their mRNA expression; these effects were suppressed by pretreatment with the aqueous fraction or berberine, which also suppressed the phosphorylation of ERK, JNK, and p38 kinases and the nuclear expression of nuclear factor $(NF)-{\kappa}B$ p65 in P. acnes-stimulated cells. Thus, the aqueous fraction and berberine effectively exerted anti-inflammatory activities by suppressing mitogen-activated protein kinase and $NF-{\kappa}B$ signaling pathways in human keratinocytes and may be used for treating P. acnes-induced inflammatory skin diseases.

Role of Interleukin-4 in Atherosclerosis

  • Lee, Yong-Woo;Hirani, Anjali A.
    • Archives of Pharmacal Research
    • /
    • 제29권1호
    • /
    • pp.1-15
    • /
    • 2006
  • Vascular endothelial cell injury or dysfunction has been implicated in the onset and' progression of cardiovascular diseases including atherosclerosis. A number of previous studies have demonstrated that the pro-oxidative and pro-inflammatory pathways within vascular endothelium play an important role in the initiation and progression of atherosclerosis, Recent evidence has provided compelling evidence to indicate that interleukin-4 (IL-4) can induce proc inflammatory environment via oxidative stress-mediated up-regulation of inflammatory mediators such as cytokine, chemokine, and adhesion molecules in vascular endothelial cells. In addition, apoptotic cell death within vascular endothelium has been hypothesized to be involved in the development of atherosclerosis. Emerging evidence has demonstrated that IL-4 can induce apoptosis of human vascular endothelial cells through the caspase-3-dependent pathway, suggesting that IL-4 can increase endothelial cell turnover by accelerated apoptosis, the event which may cause the dysfunction of the vascular endothelium. These studies will have a high probability of revealing new directions that lead to the development of clinical strategies toward the prevention and/or treatment for individuals with inflammatory vascular diseases including atherosclerosis.

Analgesic and Anti-inflammatory Activity of Resina Pini

  • Seo, Young-A;Suk, Kui-Duk
    • Natural Product Sciences
    • /
    • 제13권4호
    • /
    • pp.347-354
    • /
    • 2007
  • In this study, we investigated the potential of Resina Pini (RP) for anti-inflammatory and analgesic agents to treat inflammatory diseases such as gingivitis and periodontitis. Crude RP (RP1), recrystallized RP (RP2), and Ramus Mori Albae-treated RP (RP3), plus their respective water extracts (RP1-WE, RP2-WE and RP3-WE) were prepared for in vitro and in vivo tests. We couldn't find any signs of heavy metals pollution in all the RP samples. RP2-WE exhibited the highest viability of human gingival fibroblasts (HGF) and the strongest scavenging activity on superoxide anion. RP1, RP2 and RP3, RP2 showed potent scavenging activity on DPPH free radical. RP2-WE displayed a stronger inhibition on hyaluronidase (HAase) activity and RP3 also displayed potent HAase inhibition. RP2-WE, RP3-WE, RP3 and RP2 were reduced admirably the production of $PGE_2$ in HGF. In addition, RP2-WE and RP3-WE exhibited potent inhibitory activities on arachidonic acid-induced ear edema in mouse. Moreover, RP-2 prevented completely acetic acid-induced writhing by 100.0% and RP1, RP3, RP1-WE and RP2-WE also exhibited excellent protective activities against writhing. While aminopyrine, the positive control, showed 76.9% analgesic effect at the same dose. Taken together, these results suggest that recrystallized aqueous extract of Resina Pini could be a promising drug for the treatment of periodontal diseases.

The Screening of Fermented Medicinal Herbs to Identify Those with Anti-inflammatory Properties

  • Shen, Feng-Yan;Ra, Je-Hveon;Kim, Jin-Ju;Jung, Sung-Ki
    • 대한한방내과학회지
    • /
    • 제30권1호
    • /
    • pp.64-73
    • /
    • 2009
  • Objectives : Consumption of fermented foods has been known to alleviate some of the symptoms of atopy and may limit allergy development, while there are also many medicinal herbs proved to be effective for immunologically-mediated diseases. In this study, we introduced modern zymology to ferment some herbs to see if fermentation has the possibility of increasing the anti-inflammatory effects of medicinal herbs. Interleukin-4 (IL-4) and interferon-gamma $(INF-\gamma)$ have been demonstrated to be the main factors in the pathology of allergic diseases. Methods : We measured the levels of IL-4 and $INF-\gamma$ on concanavalin A-induced BALB/c mice spleen cells, which were subsequently treated with fermented and unfermented herbs. We then compared the fermented groups with unfermented groups to see if the anti-inflammatory effects of the herbs were influenced by fermentation. Results and Conclusions : Our results showed that fermentation had the potential to increase the anti-inflammatory effects of some medicinal herbs, and Astragalus membranaceus and Salvia miltiorrhiza would be the most suitable medicinal herbs for fermentation among the herbs in this study.

  • PDF

Role of Salvia miltiorrhiza for Modulation of Th2-derived Cytokines in the Resolution of Inflammation

  • Moon, Sun-Hee;Shin, Seul-Mee;Kim, Seul-Ah;Oh, Hee-Eun;Han, Shin-Ha;Lee, Seung-Jeong;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • 제11권5호
    • /
    • pp.288-298
    • /
    • 2011
  • Background: Salvia miltiorrhiza (SM) has been used to treat inflammatory diseases including edema and arthritis; however, the anti-inflammatory mechanism of SM action remains unresolved. Methods: The effects of an ethanol extract of SM (ESM) on pro-inflammatory cytokines such as TNF-${\alpha}$, IL-$1{\beta}$, IL-6, and NO, and on anti-inflammatory cytokines including IL-4, IL-10, TGF-${\beta}$, and IL-1Ra have been studied in an attempt to elucidate the anti-inflammatory mechanism in murine macrophages. Results: ESM inhibited the production of pro-inflammatory cytokines via down-regulation of gene and protein expression whereas it increased the anti-inflammatory cytokines. Furthermore, ESM inhibited the expression of the chemokines, RANTES and CX3CL1, as well as of inflammatory mediators such as TLR-4 and $11{\beta}$-HSD1. Conclusion: These results indicated that the regulatory effects of ESM may be mediated though the suppression of pro-inflammatory cytokines as well as the induction of anti-inflammatory cytokines. Consequently, we speculate that ESM has therapeutic potential for inflammation-associated disorders.

Anti-Inflammatory Effects of Fermented Products with Avena sativa on RAW264.7 and HT-29 Cells via Inhibition of Inflammatory Mediators

  • Shin, Jihun;Lee, Mina
    • Natural Product Sciences
    • /
    • 제26권3호
    • /
    • pp.244-251
    • /
    • 2020
  • This study investigated therapeutic candidates with anti-inflammatory potential among traditional dietary ingredients targeting inflammatory bowel disease (IBD). Both Avena sativa and traditional fermented products, such as Korean soy paste, are popular health foods. We investigated the anti-inflammatory effects of soy paste combined with A. sativa (KDA), compared with soy paste without A. sativa (KD) by evaluating the expression of pro-inflammatory cytokines in lipopolysaccharide-stimulated RAW264.7 mouse macrophages and HT-29 human colon epithelial cells. KDA significantly inhibited the production of nitric oxide (NO) and downregulated the pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α in lipopolysaccharide (LPS)-induced RAW264.7 cells. In another in vitro experiment involving LPS-stimulated HT-29 cells, KDA suppressed the levels of IL-8, which is the chemokine elevated in IBD. In addition, KDA exhibited anti-oxidative properties, such as 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and 2,2'-azino-bis(3-ethylbenz-thiazoline-6-sulfonic acid) (ABTS) radical scavenging activity. Our findings revealed that A. sativa combined with soy paste exhibits a synergistic anti-inflammatory and anti-oxidant effect following fermentation. These results suggest that KDA may be used as a potential anti-inflammatory therapy against IBD.

금은화(金銀花)와 황금(黃芩)이 배오(配伍)된 처방제(處方劑)의 항염증(抗炎症) 효과(效果) 연구(硏究) (Study on the Anti-inflammatory Effects of the Remedy Prescripted with Lonicerae Flos and Scutellariae Radix in U937 cells)

  • 이용숙;장선일
    • 대한한의학방제학회지
    • /
    • 제18권1호
    • /
    • pp.121-132
    • /
    • 2010
  • Inflammatory reaction is characterized by over-production of inflammatory mediators due to an up-regulation of inflammatory pathways, which produce pro-inflammatory mediators, such as interleukin-1beta (IL-$1{\beta}$), IL-6, tumour necrosis factor alpha (TNF-$\alpha$), prostaglantin $E_2$ ($PGE_2$), and nitric oxide (NO) in U937 cells. We investigate the anti-inflammatory effects of water extracts from Lonicerae Flos and Scutellariae Radix in lipopolysaccharide (LPS)-stimulated U937 cells. Each extract suppressed the production of inflammatory mediators (NO, IL-$1{\beta}$, TNF-$\alpha$, and $PGE_2$) and the expression of inducible NO synthase and cyclooxygenase-2 in LPS- stimulated U937 cells in a dose-dependent manner. These suppressive effects were synergistically increased by their combination. Their combination extract also inhibited NF-${\kappa}B$-DNA complex of NF-${\kappa}B$ binding activity and translocation of NF-${\kappa}B$ from cytosol to nucleus. These results suggest that the combination of water-extractable components of Lonicerae Flos and Scutellariae Radix may be useful for therapeutic drugs against inflammatory immune diseases, probably by suppressing the production of inflammatory mediators.