Role of Interleukin-4 in Atherosclerosis

  • Lee, Yong-Woo (Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University) ;
  • Hirani, Anjali A. (School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University)
  • Published : 2006.01.01

Abstract

Vascular endothelial cell injury or dysfunction has been implicated in the onset and' progression of cardiovascular diseases including atherosclerosis. A number of previous studies have demonstrated that the pro-oxidative and pro-inflammatory pathways within vascular endothelium play an important role in the initiation and progression of atherosclerosis, Recent evidence has provided compelling evidence to indicate that interleukin-4 (IL-4) can induce proc inflammatory environment via oxidative stress-mediated up-regulation of inflammatory mediators such as cytokine, chemokine, and adhesion molecules in vascular endothelial cells. In addition, apoptotic cell death within vascular endothelium has been hypothesized to be involved in the development of atherosclerosis. Emerging evidence has demonstrated that IL-4 can induce apoptosis of human vascular endothelial cells through the caspase-3-dependent pathway, suggesting that IL-4 can increase endothelial cell turnover by accelerated apoptosis, the event which may cause the dysfunction of the vascular endothelium. These studies will have a high probability of revealing new directions that lead to the development of clinical strategies toward the prevention and/or treatment for individuals with inflammatory vascular diseases including atherosclerosis.

Keywords

References

  1. Adams, J. L., Badger, A. M., Kumar, S., and Lee, J. C., p38 MAP kinase: molecular target for the inhibition of pro-inflammatory cytokines. Prog. Med. Chem., 38, 1-60 (2001) https://doi.org/10.1016/S0079-6468(08)70091-2
  2. Aiello, R. J., Bourassa, P. K., Lindsey, S., Weng, W., Natoli, E., Rollins, B. J., and Milos, P. M., Monocyte chemoattractant protein-1 accelerates atherosclerosis in apolipoprotein Edeficient mice. Arterioscler. Thromb. Vasc. Biol., 19, 1518- 1525 (1999) https://doi.org/10.1161/01.ATV.19.6.1518
  3. Ahmad, M., Theofanidis, P., and Medford, R. M., Role of activating protein-1 in the regulation of the vascular cell sadhesion molecule-1 gene expression by tumor necrosis factor-$\alpha$. J. Biol. Chem., 273, 4616-4621 (1998) https://doi.org/10.1074/jbc.273.8.4616
  4. Arrigo, A. P., Gene expression and the thiol redox state. Free Radic. Biol. Med., 27, 936-944 (1999) https://doi.org/10.1016/S0891-5849(99)00175-6
  5. Badger, A. M., Griswold, D. E., Kapadia, R., Blake, S., Swift, B. A., Hoffman, S. J., Stroup, G. B., Webb, E., Rieman, D. J., Gowen, M., Boehm, J. C., Adams, J. L., and Lee, J. C., Disease-modifying activity of SB 242235, a selective inhibitor of p38 mitogen-activated protein kinase, in rat adjuvantinduced arthritis. Arthritis Rheum., 43, 175-183 (2000) https://doi.org/10.1002/1529-0131(200001)43:1<175::AID-ANR22>3.0.CO;2-S
  6. Badger, A. M., Roshak, A. K., Cook, M. N., Newman-Tarr, T. M., Swift, B. A., Carlson, K., Connor, J. R., Lee, J. C., Gowen, M., Lark, M. W., and Kumar, S., Differential effects of SB 242235, a selective p38 mitogen-activated protein kinase inhibitor, on IL-1 treated bovine and human cartilage/chondrocyte cultures. Osteoarthr. Cartil., 8, 434-443 (2000) https://doi.org/10.1053/joca.1999.0319
  7. Baggiolini, M., Dewald, B., and Moser, B., Human chemokines: An update. Annu. Rev. Immunol., 15, 675-705 (1997) https://doi.org/10.1146/annurev.immunol.15.1.675
  8. Barks, J. L., McQuillan, J. J., and Iademarco, F., TNF-$\alpha$ and IL-4 synergistically increase vascular cell adhesion molecule-1 expression in cultured vascular smooth muscle cells. J. Immunol., 159, 4532-4538 (1997)
  9. Behr, T. M., Nerurkar, S. S., Nelson, A. H., Coatney, R. W., Woods, T. N., Sulpizio, A., Chandra, S., Brooks, D. P., Kumar, S., Lee, J. C., Ohlstein, E. H., Angermann, C. E., Adams, J. L., Sisko, J., Sackner-Bernstein, J. D., and Willette, R. N., Hypertensive end-organ damage and premature mortality are p38 mitogen-activated protein kinase-dependent in a rat model of cardiac hypertrophy and dysfunction. Circulation, 104, 1292- 1298 (2001) https://doi.org/10.1161/hc3601.094275
  10. Belkner, J., Stender, H., and Kühn, H., The rabbit 15-lipoxygenase preferentially oxygenates LDL cholesterol esters, and this reaction does not require vitamin E. J. Biol. Chem., 273, 23225-23232 (1998) https://doi.org/10.1074/jbc.273.36.23225
  11. Bennett, B. L., Cruz, R., Lacson, R. G., and Manning, A. M., Interleukin-4 suppression of tumor necrosis factor $\alpha$- stimulated E-selectin transcription is mediated by STAT6 antagonism of NF-$\kappa$B. J. Biol. Chem., 272, 10212-10219 (1997) https://doi.org/10.1074/jbc.272.15.10212
  12. Bennett, M. R., Evan, G. I., and Newby, A. C., Deregulated expression of the c-myc oncogene abolishes inhibition of proliferation of rat vascular smooth muscle cells by serum reduction, interferon-gamma, heparin, and cyclic nucleotide analogues and induces apoptosis. Circ. Res., 74, 525-536 (1994) https://doi.org/10.1161/01.RES.74.3.525
  13. Berliner, J. A., Navab, M., Fogelman, A. M., Frank, J. S., Demer, L. L., Edwards, P. A., Watson, A. D., and Lusis, A. J., Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation, 91, 2488-2496 (1995) https://doi.org/10.1161/01.CIR.91.9.2488
  14. Binns, R. M., Licence, S. T., Harrison, A. A., Keelan, E. T., Robinson, M. K., and Hakard, D. O., In vivo E-selectin upregulation correlates early with infiltration of PMN, later with PBL entry: MAbs block both. Am. J. Physiol., 270, H183- H193 (1996)
  15. Bjorkerud, S. and Bjorkerud, B., Apoptosis is abundant in human atherosclerotic lesions, especially in inflammatory cells (macrophages and T cells), and may contribute to the accumulation of gruel and plaque instability. Am. J. Pathol., 149, 367-380 (1996)
  16. Blease, K., Seybold, J., Adcock, I. M., Hellewell, P. G., and Burke-Gaffney, A., Interleukin-4 and lipopolysaccharide synergize to induce vascular cell adhesion molecule-1 expression in human lung microvascular endothelial cells. Am. J. Respir. Cell. Mol. Biol., 18, 620-630 (1998) https://doi.org/10.1165/ajrcmb.18.5.3052
  17. Bochaton-Piallat, M. L., Gabbiani, F., Redard, M., Desmouliere, A., and Gabbiani, G., Apoptosis participates in cellularity regulation during rat aortic intimal thickening. Am. J. Pathol., 146, 1059-1064 (1995)
  18. Boring, L., Gosling, J., Cleary, M., and Charo, I.F., Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature, 394, 894-897 (1998) https://doi.org/10.1038/29788
  19. Bouloumie, A., Marumo, T., Lafontan, M., and Busse, R., Leptin induces oxidative stress in human endothelial cells. FASEB J., 13, 1231-1238 (1999) https://doi.org/10.1096/fasebj.13.10.1231
  20. Bowler, R. P., Sheng, H., Enghild, J. J., Pearlstein, R. D., Warner, D. S., and Crapo, J. D., A catalytic antioxidant (AEOL 10150) attenuates expression of inflammatory genes in stroke. Free Radic. Biol. Med., 33, 947-961 (2002) https://doi.org/10.1016/S0891-5849(02)00979-6
  21. Brinckmann, R., Topp, M. S., Zalan, I., Heydeck, D., Ludwig, P., Kuhn, H., Berdel, W. E., and Habenicht, J. R., Regulation of 15-lipoxygenase expression in lung epithelial cells by interleukin-4. Biochem. J., 318, 305-312 (1996) https://doi.org/10.1042/bj3180305
  22. Canfield, S., Lee, Y., Schroder, A., and Rothman, P., Cutting edge: IL-4 induces suppressor of cytokine signaling-3 expression in B cells by a mechanism dependent on activation of p38 MAPK. J. Immunol., 174, 2494-2498 (2005) https://doi.org/10.4049/jimmunol.174.5.2494
  23. Cesari, M., Penninx, B. W., Newman, A. B., Kritchevsky, S. B., Nicklas, B. J., Sutton-Tyrrell, K., Tracy, R. P., Rubin, S. M., Harris, T. B., and Pahor, M., Inflammatory markers and cardiovascular disease (The Health, Aging and Body Composition [Health ABC] Study). Am. J. Cardiol., 92, 522- 528 (2003) https://doi.org/10.1016/S0002-9149(03)00718-5
  24. Chang, T. L., Peng, X., and Fu, X., Interleukin-4 mediates cell growth inhibition through activation of Stat1. J. Biol. Chem., 275, 10212-10217 (2000) https://doi.org/10.1074/jbc.275.14.10212
  25. Chen, C. C. and Manning, A. M., TGF-$\beta$1, IL-10 and IL-4 differentially modulate the cytokine-induced expression of IL-6 and IL-8 in human endothelial cells. Cytokine, 8, 58-65 (1996) https://doi.org/10.1006/cyto.1995.0008
  26. Chen, Y. W., Zhao, P., Borup, R., and Hoffman, E. P., Expression profiling in the muscular dystrophies: Identification of novel aspects of molecular pathophysiology. J. Cell Biol., 151, 1321-1336 (2000) https://doi.org/10.1083/jcb.151.6.1321
  27. Collis, A.J., Foster, M.L., Halley, F., Maslen, C., McLay, I.M., Page, K.M., Redford, E.J., Souness, J.E., and Wilsher, N.E., RPR203494 a pyrimidine analogue of the p38 inhibitor RPR200765A with an improved in vitro potency. Bioorg. Med. Chem. Lett., 11, 693-696 (2001) https://doi.org/10.1016/S0960-894X(01)00034-8
  28. Conrad, D. J., Kühn, H., Mulkins, M., Highland, E., and Sigal, E., Specific inflammatory cytokines regulate the expression of human monocyte 15-lipoxygenase. Proc. Natl. Acad. Sci. U.S.A., 89, 217-221 (1992)
  29. Craig, R., Larkin, A., Mingo, A. M., Thuerauf, D. J., Andrews, C., McDonough, P. M., and Glembotski, C. C., p38 MAPK and NF-$\kappa$B collaborate to induce interleukin-6 gene expression and release. J. Biol. Chem., 275, 23814-23824 (2000) https://doi.org/10.1074/jbc.M909695199
  30. Cybulsky, M. and Gimbrone, M., Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science, 251, 788-791 (1991) https://doi.org/10.1126/science.1990440
  31. Cyrus, T., Witztum, J. L., Rader, D. J., Tangirala, R., Fazio, S., Linton, M. R. F., and Funk, C. D., Disruption of the12/15-LO-IX gene diminish atherosclerosis in apolipoprotein E deficient mice. J. Clin. Invest., 103, 1597-1604 (1999) https://doi.org/10.1172/JCI5897
  32. Davies, M. J., Gordon, J. L., Gearing, A. J., Pigott, R., Woolf, N., Katz, D., and Kyriakopoulos, A., The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and Eselectin in human atherosclerosis. J. Pathol., 171, 223-229 (1993) https://doi.org/10.1002/path.1711710311
  33. Davis, R. J., The mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem., 268, 14553-14556 (1993)
  34. DiCorleto, P. E. and Chisolm, G. M., Participation of the endothelium in the development of the atherosclerotic plaque. Prog. Lipid Res., 25, 365-374 (1986) https://doi.org/10.1016/0163-7827(86)90074-3
  35. Dunbar, C. E. and Nienhuis, A. W., Multiple myeloma. New approaches to therapy. JAMA, 269, 2412-2416 (1993) https://doi.org/10.1001/jama.269.18.2412
  36. Elices, M., Osborn, L., Takada, Y., Crouse, C., Luhowskyj, S., Hemler, M., and Lobb, R., VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell, 60, 577-584 (1990) https://doi.org/10.1016/0092-8674(90)90661-W
  37. Feinmark, S. J. and Cornicelli, J. A., Is there a role for 15- lipoxygenase in atherogenesis? Biochem. Pharmacol., 54, 953-959 (1997) https://doi.org/10.1016/S0006-2952(97)00135-4
  38. Fijen, J. W., Zijlstra, J. G., De Boer, P., Spanjersberg, R., Tervaert, J. W., Van Der Werf, T. S., Ligtenberg, J. J., and Tulleken, J. E., Suppression of the clinical and cytokine response to endotoxin by RWJ-67657, a p38 mitogen-activated proteinkinase inhibitor, in healthy human volunteers. Clin. Exp. Immunol., 124, 16-20 (2001) https://doi.org/10.1046/j.1365-2249.2001.01485.x
  39. Galea, P., Chartier, A., and Lebranchu, Y., Increased lymphocyte adhesion to allogeneic endothelial cells by interleukin-4 (IL- 4). Transplant. Proc., 23, 243-244 (1991)
  40. Geiss, G. K., Bumgarner, R. E., An, M. C., Agy, M. B., van 't Wout, A. B., Hammersmark, E., Carter, V. S., Upchurch, D., Mullins, J. I., and Katze, M. G., Large-scale monitoring of host cell gene expression during HIV-1 infection using cDNA microarrays. Virology, 266, 8-16 (2000) https://doi.org/10.1006/viro.1999.0044
  41. Geng, Y. J. and Libby, P., Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-1 betaconverting enzyme. Am. J. Pathol., 147, 251-266 (1995)
  42. Gimbrone, M. A., Topper, J. N., Nagel, T., Anderson, K. R., and Garcia-Cardena, G., Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann. N. Y. Acad. Sci., 902, 230- 239 (2000)
  43. Gimbrone, M. A., Bevilacqua, M. P., and Cybulsky, M. I., Endothelial-dependent mechanisms of leukocyte adhesion in inflammation and atherosclerosis. Ann. N. Y. Acad. Sci., 598, 77-85 (1990) https://doi.org/10.1111/j.1749-6632.1990.tb42279.x
  44. Ginsberg, S. D., Hemby, S. E., Lee, V. M., Eberwine, J. H., and Trojanowski, J. Q., Expression profile of transcripts in Alzheimer's disease tangle-bearing CA1 neurons. Ann. Neurol., 48, 77-87 (2000) https://doi.org/10.1002/1531-8249(200007)48:1<77::AID-ANA12>3.0.CO;2-A
  45. Goebeler, M., Gillitzer, R., Kilian, K., Utzel, K., Brocker, E., Rapp, U. R., and Ludwig, S., Multiple signaling pathwayss regulate NF-$\kappa$B-dependent transcription of the monocyte chemoattractant protein-1 gene in primary endothelial cells. Blood, 97, 46-55 (2001) https://doi.org/10.1182/blood.V97.1.46
  46. Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., and Lander, E.S., Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286, 531-537 (1999) https://doi.org/10.1126/science.286.5439.531
  47. Gottlieb, R. A., Burleson, K. O., Kloner, R. A., Babior, B. M., and Engler, R. L., Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J. Clin. Invest., 94, 1621-1628 (1994) https://doi.org/10.1172/JCI117504
  48. Grosch, S. and Kaina, B., Transcriptional activation of apurinic/ apyrimidinic endonuclease (Ape, Ref-1) by oxidative stress requires CREB. Biochem. Biophys. Res. Commun., 261, 859-863 (1999) https://doi.org/10.1006/bbrc.1999.1125
  49. Gu, L., Okada, Y., Clinton, S. K., Gerard, C., Sukhova, G. K., Libby, P., and Rollins, B. J., Absense of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol. Cell., 2, 275-281 (1998) https://doi.org/10.1016/S1097-2765(00)80139-2
  50. Gu, L., Tseng, S. C., and Rollins, B. J., Monocyte chemoattractant protein-1. Chem. Immunol., 72, 7-29 (1999) https://doi.org/10.1159/000058723
  51. Guan, Z., Buckman, S. Y., Pentland, A. P., Templeton, D. J., and Morrison, A. R., Induction of cyclooxygenase-2 by the activated MEKK1 $\rightarrow$ SEK1/MKK4 $\rightarrow$ p38 mitogen-activated protein kinase pathway. J. Biol. Chem., 273, 12901-12908 (1998) https://doi.org/10.1074/jbc.273.21.12901
  52. Guha, M., Bai, W., Nadler, J. L., and Natarajan, R., Molecular mechanisms of tumor necrosis factor a gene expression in monocytic cells via hyperglycemia-induced oxidant stressdependent and -independent pathway. J. Biol. Chem., 275, 17728-17739 (2000) https://doi.org/10.1074/jbc.275.23.17728
  53. Hall, D. J., Bates, M. E., Guar, L., Cronan, M., Korpi, N., and Bertics, P. J., The role of p38 MAPK in rhinovirus-induced monocyte chemoattractant protein-1 production by monocyticlineage cells. J. Immunol., 174, 8056-8063 (2005) https://doi.org/10.4049/jimmunol.174.12.8056
  54. Han, D. K., Haudenschild, C. C., Hong, M. K., Tinkle, B. T., Leon, M. B., and Liau, G., Evidence for apoptosis in human atherogenesis and in a rat vascular injury model. Am. J. Pathol., 147, 267-277 (1995)
  55. Han, J., Lee, J. D., Bibbs, L., and Ulevitch, R. J., A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science, 265, 808-811 (1994) https://doi.org/10.1126/science.7914033
  56. Hempel, S. L., Haycraft, D. L., Hoak, J. C., and Spector, A. A., Reduced prostacyclin formation after reoxygenation of anoxic endothelium. Am. J. Physiol., 259, C739-C745 (1990)
  57. Hennig, B. and Chow, C. K., Lipid peroxidation and endothelial cell injury: implication in atherosclerosis. Free Radical Biol. Med., 4, 99-106 (1988) https://doi.org/10.1016/0891-5849(88)90070-6
  58. Hennig, B., Toborek, M., McClain, C. J., and Diana, J. N., Nutritional implications in vascular endothelial cell metabolism. J. Am. Coll. Nutr., 15, 345-358 (1996) https://doi.org/10.1080/07315724.1996.10718609
  59. Heydeck, D., Thomas, L., Schnurr, K., Trebus, F., Thierfelder, W. E., Ihle, J. N., and Kühn, H., Interleukin-4 and -13 induce upregulation of the murine macrophage 12/15-lipoxygenase activity: Evidence for the involvement of transcription factor STAT6. Blood, 92, 2503-2510 (1998)
  60. Hiltunen, M. O., Tuomisto, T. T., Niemi, M., Brasen, J. H., Rissanen, T. T., Toronen, P., Vajanto, I., and Yla-Herttuala, S., Changes in gene expression in atherosclerotic plaques analyzed using DNA array. Atherosclerosis, 165, 23-32 (2002) https://doi.org/10.1016/S0021-9150(02)00187-9
  61. Holvoet, P. and Collen, D., Oxidized lipoproteins in atherosclerosis and thrombosis. FASEB J., 8, 1279-1284 (1994) https://doi.org/10.1096/fasebj.8.15.8001740
  62. Huber, S. A., Sakkinen, P., Conze, D., Hardin, N., and Tracy, R., Interleukin-6 exacerbates early atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol., 19, 2364-2367 (1999) https://doi.org/10.1161/01.ATV.19.10.2364
  63. Hull, M., Lieb, K., and Fiebich, B. L., Pathways of inflammatory activation in Alzheimer's disease: potential targets for disease modifying drugs. Curr. Med. Chem., 9, 83-88 (2002) https://doi.org/10.2174/0929867023371292
  64. Hunt, A. E., Williams, L. M., Lali, F. V., and Foxwell, B. M., IL-4 regulation of p38 MAPK signalling is dependent on cell type. Cytokine, 18, 295-303 (2002) https://doi.org/10.1006/cyto.2002.1043
  65. Hyams, J. S., Fitzgerald, J. E., Treem, W. R., Wyzga, N., and Kreutzer, D. L., Relationship of functional and antigenic interleukin 6 to disease activity in inflammatory bowel disease. Gastroenterology, 104, 1285-1292 (1993) https://doi.org/10.1016/0016-5085(93)90336-B
  66. Iademarco, M. F., McQuillan, J. J., and Dean, D. C., Vascular cell adhesion molecule 1: Contrasting transcriptional control mechanisms in muscle and endothelium. Proc. Natl. Acad. Sci. U.S.A., 90, 3943-3947 (1993)
  67. Iademarco, M. F., McQuillan, J. J., Rosen, G. D., and Dean, D. C., Characterization of the promoter for vascular cell adhesion molecule-1 (VCAM-1). J. Biol. Chem., 267, 16323- 16329 (1992)
  68. Ihle, J. N., STATs: Signal transducers and activators of transcription. Cell, 84, 331-334 (1996) https://doi.org/10.1016/S0092-8674(00)81277-5
  69. Ikeda, U., Ikeda, M., Oohara, T., Oguchi, A., Kamitani, K., Tsuruya, Y., and Kano, S., Interleukin-6 stimulates the growth of vascular cells in a PDGF-dependent manner. Am. J. Physiol., 260, H1713-H1717 (1991)
  70. Isner, J. M., Kearney, M., Bortman, S., and Passeri, J., Apoptosis in human atherosclerosis and restenosis. Circulation, 91, 2703-2711 (1995) https://doi.org/10.1161/01.CIR.91.11.2703
  71. Iwata, E., Asanuma, M., Nishibayashi, S., Kondo, Y., and Ogawa, N., Different effects of oxidative stress on activation of transcription factors in primary cultured rat neuronal and glial cells. Mol. Brain Res., 50, 213-220 (1997) https://doi.org/10.1016/S0169-328X(97)00190-3
  72. Ju, H., Behm, D.J., Nerurkar, S., Eybye, M. E., Haimbach, R. E., Olzinski, A. R., Douglas, S. A., and Willette, R. N., p38 MAPK inhibitors ameliorate target organ damage in hypertension: Part 1. p38 MAPK-dependent endothelial dysfunction and hypertension. J. Pharmacol. Exp. Ther., 307, 932-938 (2003) https://doi.org/10.1124/jpet.103.057422
  73. Ju, H., Nerurkar, S., Sauermelch, C. F., Olzinski, A. R., Mirabile, R., Zimmerman, D., Lee, J. C., Adams, J., Sisko, J., Berova, M., and Willette, R. N., Sustained activation of p38 mitogenactivated protein kinase contributes to the vascular response to injury. J. Pharmacol. Exp. Ther., 301, 15-20 (2002) https://doi.org/10.1124/jpet.301.1.15
  74. Kamitani, H., Geller, M., and Eling, T., Expression of 15- lipoxygenase by human colorectal carcinoma Caco-2 cells during apoptosis and cell differentiation. J. Biol. Chem., 273, 21569-21577 (1998) https://doi.org/10.1074/jbc.273.34.21569
  75. Kawashima, Y., Takeyoshi, I., Otani, Y., Koibuchi, Y., Yoshinari, D., Koyama, T., Kobayashi, M., Matsumoto, K., and Morishita, Y., FR167653 attenuates ischemia and reperfusion injury of the rat lung with suppressing p38 mitogen-activated protein kinase. J. Heart Lung Transplant., 20, 568-574 (2001) https://doi.org/10.1016/S1053-2498(01)00243-1
  76. Kishikawa, H., Shimokama, T., and Watanabe, T., Localization of T lymphocytes and macrophages expressing IL-1, IL-2 receptor, IL-6 and TNF in human aortic intima: role of cell mediated immunity in human atherogenesis. Virchows Arch. A. Pathol. Anat. Histopathol., 423, 433-442 (1993) https://doi.org/10.1007/BF01606532
  77. Kishimoto, T., Interleukin-6: From basic science to medicine-40 years in immunology. Annu. Rev. Immunol., 23, 1-21 (2005) https://doi.org/10.1146/annurev.immunol.23.021704.115806
  78. Kobayashi, M., Takeyoshi, I., Yoshinari, D., Matsumoto, K., and Morishita, Y., P38 mitogen-activated protein kinase inhibition attenuates ischemia-reperfusion injury of the rat liver. Surgery, 131, 344-349 (2002) https://doi.org/10.1067/msy.2002.121097
  79. Kochx, M. M., De Meyer, G. R., Muhring, J., Bult, H., Bultinck, J., and Herman, A. G., Distribution of cell replication and apoptosis in atherosclerotic plaques of cholesterol-fed rabbits. Atherosclerosis, 120, 115-124 (1996) https://doi.org/10.1016/0021-9150(95)05691-2
  80. Kühn, H. and Chan, L., The role of 15-lipoxygenase in atherogenesis: pro- and antiatherogenic actions. Curr. Opin. Lipidol., 8, 111-117 (1997) https://doi.org/10.1097/00041433-199704000-00009
  81. Kumar, S., Boehm, J., and Lee, J. C., p38 MAP kinases: Key signaling molecules as therapeutic targets for inflammatory diseases. Nat. Rev. Drug Discov., 2, 717-726 (2003) https://doi.org/10.1038/nrd1177
  82. Kurzrock, R., Redman, J., Cabanillas, F., Jones, D., Rothberg, J., and Talpaz, M., Serum interleukin 6 levels are elevated in lymphoma patients and correlate with survival in advanced Hodgkin's disease and with B symptoms. Cancer Res., 53, 2118-2122 (1993)
  83. Lavie, J., Dandre, F., Louis, H., Lamaziere, J. D., and Bonnet, J., Vascular cell adhesion molecule-1 gene expression during human smooth muscle cell differentiation is independent of NF-$\kappa$B activation. J. Biol. Chem., 274, 2308-2314 (1999) https://doi.org/10.1074/jbc.274.4.2308
  84. Lakshminarayanan, V., Drab-Weiss, E. A., and Roebuck, K. A., Hydrogen peroxide and tumor necrosis factor-alpha induce differential binding of the redox-responsive transcription factors AP-1 and NF-$\kappa$B to the interleukin-8 promoter in endothelial and epithelial cells. J. Biol. Chem., 273, 32670- 32678 (1996) https://doi.org/10.1074/jbc.273.49.32670
  85. Lee, J. C., Laydon, J. T., McDonnell, P. C., Gallagher, T. F., Kumar, S., Green, D., McNulty, D., Blemental, M. J., Keys, J. R., Landvatter, S. W., Strickler, J. E., McLaughlin, M. M., Siemens, I. R., Fisher, S. M., Livi, G. P., White, J. R., Adams, J. L., and Young, P. R., A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature, 372, 739-746 (1994) https://doi.org/10.1038/372739a0
  86. Lee, Y. W., Eum, S. Y., Nath, A., and Toborek, M., Estrogenmediated protection against HIV Tat protein-induced inflammatory pathways in human vascular endothelial cells. Cardiovasc. Res., 63, 139-148 (2004a) https://doi.org/10.1016/j.cardiores.2004.03.006
  87. Lee, Y. W., Eum, S. Y., Chen, K. C., Hennig, B., and Toborek, M., Gene expression profile in interleukin-4-stimulated human vascular endothelial cells. Mol. Med., 10, 19-27 (2004b) https://doi.org/10.1007/s00894-003-0164-7
  88. Lee, Y. W., Hennig, B., Fiala, M., Kim, K. S., and Toborek, M., Cocaine activates redox-regulated transcription factors and induces TNF-$\alpha$ expression in human brain endothelial cells. Brain Res., 920, 125-133 (2001a) https://doi.org/10.1016/S0006-8993(01)03047-5
  89. Lee, Y. W., Hennig, B., and Toborek, M., Redox-regulated mechanisms of IL-4-induced MCP-1 expression in human vascular endothelial cells. Am. J. Physiol. Heart. Circ. Physiol., 284, H185-H192 (2003)
  90. Lee, Y. W., Hennig, B., Yao, J., and Toborek, M., Methamphetamine induces AP-1 and NF-$\kappa$B binding and transactivation in human brain endothelial cells. J. Neurosci. Res., 66, 583- 591 (2001b) https://doi.org/10.1002/jnr.1248
  91. Lee, Y. W., Kühn, H., Hennig, B., and Toborek M., IL-4 induces apoptosis of endothelial cells through the caspase-3- dependent pathway. FBES Lett., 485, 122-126 (2000) https://doi.org/10.1016/S0014-5793(00)02208-0
  92. Lee, Y. W., Kühn, H., Hennig, B., Daugherty, A., and Toborek M., Interleukin-4 induces transcription of the 15-lipoxygenase-I gene in human endothelial cells. J. Lipid Res., 42, 783-791 (2001c)
  93. Lee, Y. W., Kühn, H., Hennig, B., Neish, A. S., and Toborek, M., IL-4-induced oxidative stress upregulates VCAM-1 gene expression in human endothelial cells. J. Mol. Cell. Cardiol., 33, 83-94 (2001d) https://doi.org/10.1006/jmcc.2000.1278
  94. Lee, Y. W., Son, K. W., Flora, G., Hennig, B., Nath, A., and Toborek, M., Methamphetamine activates DNA binding of specific redox-responsive transcription factors in mouse brain. J. Neurosci. Res., 70, 82-89 (2002) https://doi.org/10.1002/jnr.10370
  95. Levy, B. D., Romano, M., Chapman, H. A., Reilly, J. J., Drazen, J., and Serhan, C. N., Human alveolar macrophages have 15-lipoxygenase and generate 15(S)-hydroxy-5,8,11-cistrans- eicosatetraenoic acid and lipoxins. J. Clin. Invest., 92, 1572-1579 (1993) https://doi.org/10.1172/JCI116738
  96. Libby, P. and Galis, Z. S., Cytokines regulate genes involved in atherogenesis. Ann. N. Y. Acad. Sci., 748, 158-168 (1995)
  97. Libby, P., Ridker, P. M., and Maseri, A., Inflammation and atherosclerosis. Circulation, 105, 1135-1143 (2002) https://doi.org/10.1161/hc0902.104353
  98. Lukacs, N. W., Strieter, R. M., Elner, V., Evanoff, H. L., Burdick, M. D., and Kunkel, S. L., Production of chemokines, interleukin-8 and monocyte chemoattractant protein-1, during monocyte: endothelial cell interactions. Blood, 86, 2767-2773 (1995)
  99. Luscinskas, F. W. and Gimbrone, M. A., Endothelial-dependent mechanisms in chronic inflammatory leukocyte recruitment. Annu. Rev. Med., 47, 413-421 (1996) https://doi.org/10.1146/annurev.med.47.1.413
  100. Ma, X. L., Kumar, S., Gao, F., Louden, C. S., Lopez, B. L., Christopher, T. A., Wang, C., Lee, J. C., Feuerstein, G. Z., and Yue, T. L., Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation, 99, 1685-1691 (1999) https://doi.org/10.1161/01.CIR.99.13.1685
  101. Madamanchi, N. R., Li, S., Patterson, C., and Runge, M. S., Reactive oxygen species regulate heat-shock protein 70 via the JAK-STAT pathway. Arterioscler. Thromb. Vasc. Biol., 21, 321-326 (2001) https://doi.org/10.1161/01.ATV.21.3.321
  102. Madhok, R., Crilly, A., Watson, J., and Capell, H. A., Serum interleukin 6 levels in rheumatoid arthritis: correlations with clinical and laboratory indices of disease activity. Ann. Rheum. Dis., 52, 232-234 (1993) https://doi.org/10.1136/ard.52.3.232
  103. Masinovsky, B., Urdal, D., and Gallatin, W. M., IL-4 acts synergistically with IL-1 beta to promote lymphocyte adhesion to microvacular endothelium by induction of vascular cell adhesion molecule-1. J. Immunol., 145, 2886-2895 (1990)
  104. McCarty, J. M., Yee, E. K., Deisher, T. A., Harlan, J. M., and Kaushansky, K., Interleukin-4 induces endothelial vascular cell adhesion molecule-1 (VCAM-1) by an NF-$\kappa$B-independent mechanism. FEBS Lett., 372, 194-198 (1995) https://doi.org/10.1016/0014-5793(95)00976-G
  105. Mirnics, K., Middleton, F. A., Marquez, A., Lewis, D. A., and Levitt, P., Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron, 28, 53-67 (2000) https://doi.org/10.1016/S0896-6273(00)00085-4
  106. Neish, A. S., Khachigian, L. M., Park, A., Baichwal, V. R., and Collins, T., Sp1 is a component of the cytokine-inducible enhancer in the promoter of vascular cell adhesion molecule- 1. J. Biol. Chem., 270, 28903-28909 (1995) https://doi.org/10.1074/jbc.270.48.28903
  107. Neish, A. S., Williams, A. J., Palmer, H. J., Whitley, M. Z., and Collins, T., Functional analysis of the human vascular cell adhesion molecule 1 promoter. J. Exp. Med., 176, 1583-1593 (1992) https://doi.org/10.1084/jem.176.6.1583
  108. Nelken, N. A., Coughlin, S. R., Gordon, D., and Wilcox, J. N., Monocyte chemoattractant protein-1 in human atheromatous plaques. J. Clin. Invest., 88, 1121-1127 (1991) https://doi.org/10.1172/JCI115411
  109. Osborn, L., Hession, C., Tizard, R., Vassallo, C., Luhowskyj, S., Chi-Rosso, G., and Lobb, R., Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell, 59, 1203- 1211 (1989) https://doi.org/10.1016/0092-8674(89)90775-7
  110. Paul, W. E., Interleukin-4: a prototypic immunoregulatory lymphokine. Blood, 77, 1859-1870 (1991)
  111. Pearson, G., Robinson, F., Gibson, T. B., Xu, B., Karandikar, M., Berman, K., and Cobb, M. H., Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev., 22, 153-183 (2001) https://doi.org/10.1210/er.22.2.153
  112. Pernis, A., Witthuhn, B., Keegan, A. D., Nelms, K., Garfein, E., Ihle, J. N., Paul, W. E., Pierce, J. H., and Rothman, P., Interleukin 4 signals through two related pathways. Proc. Natl. Acad. Sci. U.S.A., 92, 7971-7975 (1995)
  113. Pober, J. S., Activation and injury of endothelial cells by cytokines. Pathol. Biol., 46, 159-163 (1998)
  114. Pohlman, T. H. and Harlan, J. M., Human endothelial cell response to lipopolysaccharide, interleukin-1, and tumor necrosis factor is regulated by protein synthesis. Cell. Immunol., 119, 41-52 (1989) https://doi.org/10.1016/0008-8749(89)90222-0
  115. Polunovsky, V. A., Wendt, C. H., Ingbar, D. H., Peterson, M. S., and Bitterman, P. B., Induction of endothelial cell apoptosis by TNF alpha: modulation by inhibitors of protein synthesis. Exp. Cell Res., 214, 584-594 (1994) https://doi.org/10.1006/excr.1994.1296
  116. Profita, M., Vignola, A. M., Sala, A., Mirabella, A., Siena, L., Pace, E., Folco, G., and Bonsignore, G., Interleukin-4 enhances 15- lipoxygenase activity and incorporation of 15(S)-HETE into cellular phospholipids in cultured pulmonary epithelial cells. Am. J. Respir. Cell. Mol. Biol., 20, 61-68 (1999) https://doi.org/10.1165/ajrcmb.20.1.3151
  117. Rahman, I. and MacNee, W., Regulation of redox glutathione levels and gene transcription in lung inflammation: Therapeutic approaches. Free Radic. Biol. Med., 28, 1405-1420 (2000) https://doi.org/10.1016/S0891-5849(00)00215-X
  118. Reape, T. J. and Groot, P. H., Chemokines and atherosclerosis. Atherosclerosis, 147, 213 -225 (1999) https://doi.org/10.1016/S0021-9150(99)00346-9
  119. Ridker, P. M., Hennekens, C. H., Buring, J. E., and Rifai, N., Creactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med., 342, 836-843 (2000a) https://doi.org/10.1056/NEJM200003233421202
  120. Ridker, P. M., Rifai, N., Stampfer, M. J., and Hennekens, C. H., Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation, 101, 1767-1772 (2000b) https://doi.org/10.1161/01.CIR.101.15.1767
  121. Rocken, M., Racke, M., and Shevach, E. M., IL-4-induced immune deviation as antigen-specific therapy for inflammatory autoimmune disease. Immunol. Today, 17, 225-231 (1991) https://doi.org/10.1016/0167-5699(96)80556-1
  122. Rollins, B. J., Chemokines. Blood, 90, 909-928 (1997)
  123. Rollins, B. J. and Pober, J. S., Interleukin-4 induces the synthesis and secretion of MCP-1/JE by human endothelial cells. Am. J. Pathol., 138, 1315-1319 (1991)
  124. Ross, R., Atherosclerosis is an inflammatory disease. Am. Heart J., 138, S419-S420 (1999) https://doi.org/10.1016/S0002-8703(99)70266-8
  125. Ross, R., The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature, 362, 801-809 (1993) https://doi.org/10.1038/362801a0
  126. Saccani, S., Pantano, S., and Natoli, G., p38-Dependent marking of inflammatory genes for increased NF-kappa B recruitment. Nat. Immunol., 3, 69-75 (2002) https://doi.org/10.1038/ni748
  127. Sasaguri, T., Arima, N., Tanimoto, A., Shimajiri, S., Hamada, T., and Sasaguri, Y., A role for interleukin 4 in production of matrix metalloproteinase 1 by human aortic smooth muscle cells. Atherosclerosis, 138, 247-253 (1998) https://doi.org/10.1016/S0021-9150(97)00296-7
  128. Schindler, C. and Dranell Jr., J. E., Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu. Rev. Biochem., 64, 621-651 (1995) https://doi.org/10.1146/annurev.bi.64.070195.003201
  129. Schleimer, R. P., Sterbinsky, S. A., Kaiser, J., Bickel, C .A., Klunk, D. A., Tomioka, K., Newman, W., Luscinskas, F. W., Gimbrone, M. A., and McIntyre Jr., B. W., IL-4 induces adherence of human eosinophils and basophils but not neutrophils to endothelium. Association with expression of VCAM-1. J. Immunol., 148, 1086-1092 (1992)
  130. Schnurr, K., Borchert, A., and Kühn, H., Inverse regulation of lipid-peroxidizing and hydroperoxyl lipid-reducing enzymes by interleukins 4 and 13. FASEB J., 13, 143-154 (1999) https://doi.org/10.1096/fasebj.13.1.143
  131. Schreck, R., Albermann, K., and Baeurele, P. A., Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells. Free Radic. Res. Commun., 17, 221-237 (1992) https://doi.org/10.3109/10715769209079515
  132. Schulze, A. and Downward, J., Navigating gene expression using microarrays-a technology review. Nature Cell Biol., 3, E190-E195 (2001) https://doi.org/10.1038/35087138
  133. Seger, R. and Krebs E. G., The MAPK signaling cascade. FASEB J., 9, 726-735 (1995) https://doi.org/10.1096/fasebj.9.9.7601337
  134. Seino, Y., Ikeda, U., Ikeda, M., Yamamoto, K., Misawa, Y., Hasegawa, T., Kano, S., and Shimada, K., Interleukin 6 gene transcripts are expressed in human atherosclerotic lesions. Cytokine, 6, 87-91 (1994) https://doi.org/10.1016/1043-4666(94)90013-2
  135. Seino, Y., Ikeda, U., Takahashi, M., Hojo, Y., Irokawa, M., Kasahara, T., and Shimada, K., Expression of monocyte chemoattractant protein-1 in vascular tissue. Cytokine, 7, 575-579 (1995) https://doi.org/10.1006/cyto.1995.0078
  136. Sendobry, S. M., Cornicelli, J. A., Welch, K., Bocan, T., Tait, B., Trivedi, B. K., Colbry, N., Dyer, R. D., Feinmark, S. J., and Daugherty, A., Attenuation of diet-induced atherosclerosis in rabbits with a highly selective 15-lipoxygenase inhibitor lacking significant antioxidant properties. Br. J. Pharmacol., 120, 1199-1206 (1997) https://doi.org/10.1038/sj.bjp.0701007
  137. Shyy, Y. J., Li, Y. S., and Kolattukudy, P. E., Structure of human monocyte chemotactic protein gene and its regulation by TPA. Biochem. Biophys. Res. Commun., 169, 346-351 (1990) https://doi.org/10.1016/0006-291X(90)90338-N
  138. Simmons, P. J., Masinovsky, B., Longenecker, B. M., Berenson, R., Torok-Storb, B., and Gallatin, W. M., Vascular cell adhesion molecule-1 expressed by bone marrow stromal cells mediates the binding of hematopoietic progenitor cells. Blood, 80, 388- 395 (1992)
  139. Simon, A. R., Rai, U., Fanburg, B. L., and Cochran, B. H., Activation of the JAK-STAT pathway by reactive oxygen species. Am. J. Physiol., 275, C1640-C1652 (1998)
  140. Sparrow, C. P., Parthasarathy, S., and Steinberg, D., Enzymatic modification of low density lipoprotein by purified lipoxygenase plus phospholipase A2 mimics cell-mediated oxidative modification. J. Lipid Res., 29, 745-753 (1998)
  141. Stanimirovic, D., Zhang, W., Howlett, C., Lemieux P., and Smith, C., Inflammatory gene transcription in human astrocytes exposed to hypoxia: roles of the nuclear factor-kB and autocrine stimulation. J. Neuroimmunol., 119, 365-376 (2001) https://doi.org/10.1016/S0165-5728(01)00402-7
  142. Strieter, R. M., Wiggins, R., Phan, S. H., Wharram, B. L., Showell, H. J., Remick, D. G., Chensue, S. W., and Kunkel, S. L., Monocyte chemotactic protein gene expression by cytokine-treated human fibroblasts and endothelial cells. Biochem. Biophys. Res. Commun., 162, 694-700 (1989) https://doi.org/10.1016/0006-291X(89)92366-8
  143. Sukovich, D. A., Kauser, K., Shirley, F. D., DelVecchio, V., Halks- Miller, M., and Rubanyi, G. M., Expression of interleukin-6 in atherosclerotic lesions of male apoE-knockout mice. Arterioscler. Thromb. Vasc. Biol., 18, 1498-1505 (1998) https://doi.org/10.1161/01.ATV.18.9.1498
  144. Suzuki, E., Satonaka, H., Nishimatsu, H., Oba, S., Takeda, R., Omata, M., Fujita, T., Nagai, R., and Hirata, Y., Myocyte enhancer factor 2 mediates vascular inflammation via the p38-dependent pathway. Circ. Res., 95, 42-49 (2004) https://doi.org/10.1161/01.RES.0000134631.75684.4A
  145. Takeda, K. and Akira, S., STAT family of transcription factors in cytokine-mediated biological responses. Cytokine Growth Factor Rev., 11, 199-207 (2000) https://doi.org/10.1016/S1359-6101(00)00005-8
  146. Takeya, M., Yoshimura, T., Leonard, E. J., and Takahashi, K., Detection of monocyte chemoattractant protein-1 in human atherosclerotic lesions by an anti-monocyte chemoattractant protein-1 monoclonal antibody. Hum. Pathol., 24, 534-539 (1993) https://doi.org/10.1016/0046-8177(93)90166-E
  147. Tamaru, M. and Narumi, S., E-selectin gene expression is induced synergistically with the coexistence of activated classic protein kinase C and signals elicited by interleukin-1b but not tumor necrosis factor-$\alpha$ . J. Biol. Chem., 274, 3753-3763 (1999) https://doi.org/10.1074/jbc.274.6.3753
  148. Taubman, M. B., Rollins, B. J., Poon, M., Marmur, J., Green, R. S., Berk, B. C., and Nadal-Ginard, B., JE mRNA accumulates rapidly in aortic injury and in platelet-derived growth factorstimulated vascular smooth muscle cells. Circ. Res., 70, 314- 325 (1992) https://doi.org/10.1161/01.RES.70.2.314
  149. Thornhill, M. H. and Haskard, D. O., IL-4 regulates endothelial cell activation by IL-1, tumor necrosis factor, or IFN-$\gamma$. J. Immunol., 145, 865-872 (1990)
  150. Thornhill, M. H., Kyan-Aung, A. U., and Haskard, D. O., IL-4 increases human endothelial cell adhesiveness for T cells but not for neutrophils. J. Immunol., 144, 3060-3065 (1990)
  151. Toborek, M. and Kaiser, S., Endothelial cell functions. Relationship to atherogenesis. Basic Res. Cardiol., 94, 295-314 (1999) https://doi.org/10.1007/s003950050156
  152. Toborek, M., Lee, Y. W., Garrido, R., Kaiser, S., and Hennig, B., Unsaturated fatty acids selectively induce an inflammatory environment in human endothelial cells. Am. J. Clin. Nutr., 75, 119-125 (2002a) https://doi.org/10.1093/ajcn/75.1.119
  153. Toborek, M., Lee, Y. W., Kaiser, S., and Hennig, B., Measurement of inflammatory properties of fatty acids in human endothelial cells. Methods Enzymol., 352, 198-219 (2002b) https://doi.org/10.1016/S0076-6879(02)52020-6
  154. Ueda, A., Ishigatsubo, Y., Okubo, T., and Yoshimura T., Transcriptional regulation of the human monocyte chemoattractant protein-1 gene. J. Biol. Chem., 272, 31092-31099 (1997) https://doi.org/10.1074/jbc.272.49.31092
  155. Verhasselt, V., Goldman, M., and Willems, F., Oxidative stress up-regulates IL-8 and TNF-$\alpha$ synthesis by human dendritic cells. Eur. J. Immunol., 28, 3886-3890 (1998) https://doi.org/10.1002/(SICI)1521-4141(199811)28:11<3886::AID-IMMU3886>3.0.CO;2-M
  156. Waetzig, G. H., Seegert, D., Rosenstiel, P., Nikolaus, S., and Schreiber, S., p38 mitogen-activated protein kinase is activated and linked to TNF-alpha signaling in inflammatory bowel disease. J. Immunol., 168, 5342-5351 (2002) https://doi.org/10.4049/jimmunol.168.10.5342
  157. Watson, J. M., Berek, J. S., and Martinez-Maza, O., Growth inhibition of ovarian cancer cells induced by antisense IL-6 oligonucleotides. Gynecol. Oncol., 49, 8-15 (1993) https://doi.org/10.1006/gyno.1993.1077
  158. Watson, A., Mazumder, A., Stewart, M., and Balasubramanian, S., Technology for microarray analysis of gene expression. Curr. Opin. Biotechnol., 9, 609-614 (1998) https://doi.org/10.1016/S0958-1669(98)80138-9
  159. Westra, J., Kuldo, J. M., van Rijswijk, M. H., Molema, G., and Limburg, P. C., Chemokine production and E-selectin expression in activated endothelial cells are inhibited by p38 MAPK (mitogen activated protein kinase) inhibitor RWJ 67657. Int. Immunopharmacol., 5, 1259-1269 (2005) https://doi.org/10.1016/j.intimp.2005.03.005
  160. Whelan, J., Selectin synthesis and inflammation. Trends Biochem. Sci., 21, 65-69 (1996) https://doi.org/10.1016/S0968-0004(96)80184-8
  161. Wright, P. S., Cooper, J. R., Kropp, K. E., and Busch, S. J., Induction of vascular cell adhesion molecule-1 expression by IL-4 in human aortic smooth muscle cells is not associated with increased nuclear NF-$\kappa$B levels. J. Cell. Physiol., 180, 381-389 (1999) https://doi.org/10.1002/(SICI)1097-4652(199909)180:3<381::AID-JCP9>3.0.CO;2-F
  162. Wung, B. S., Cheng, J. J., Hsieh, H. J., Shyy, Y. J., and Wang, D. L., Cyclic strain-induced monocyte chemtactic protein-1 gene expression in endothelial cells involves reactive oxygen species activation of activator protein 1. Circ. Res., 81, 1-7 (1997) https://doi.org/10.1161/01.RES.81.1.1
  163. Ylä-Herttuala, S., Gene expression in atherosclerotic lesions. Hertz., 17, 270-276 (1992)
  164. Ylä-Herttuala, S., Lipton, B. A., Rosenfeld, M. E., Sarkioja, T., Yoshimura, T., Leonard, E. J., Witztum, J. L., and Steinberg, D., Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc. Natl. Acad. Sci. U.S.A., 88, 5252-5256 (1991)
  165. Ylä-Herttuala, S., Rosenfeld, M. E., Parthasarathy, S., Glass, C. K., Sigal, E., Witztum, J. T., and Steinberg, D., Colocalization of 15-lipoxygenase mRNA and protein with epitopes of oxidized low density lipoprotein in macrophage-rich areas of atherosclerotic lesions. Proc. Natl. Acad. Sci. U.S.A., 87, 6959-6963 (1990)
  166. Zhou, Z-H. L., Chaturvedi, P., Han, Y., Aras, S., Li, Y., Kolattukudy, P. E., Ping, D., Boss, J. M., and Ransohoff, R. M., IFN-${\gamma}$ induction of the human monocyte chemoattractant protein (hMCP)-1 gene in astrocytoma cells: Functional interaction between an IFN-$\gamma$-activated site and a GC-rich element. J. Immunol., 160, 3908-3916 (1998)