DOI QR코드

DOI QR Code

Inflammasomes: Molecular Regulation and Implications for Metabolic and Cognitive Diseases

  • Choi, Alexander J.S. (Center for Sleep Medicine, Department of Pulmonary, Critical Care, and Sleep Medicine, Tufts University School of Medicine) ;
  • Ryter, Stefan W. (Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College)
  • Received : 2014.04.28
  • Accepted : 2014.05.01
  • Published : 2014.06.30

Abstract

Inflammasomes are specialized signaling platforms critical for the regulation of innate immune and inflammatory responses. Various NLR family members (i.e., NLRP1, NLRP3, and IPAF) as well as the PYHIN family member AIM2 can form inflammasome complexes. These multiprotein complexes activate inflammatory caspases (i.e., caspase-1) which in turn catalyze the maturation of select pro-inflammatory cytokines, including interleukin (IL)-$1{\beta}$ and IL-18. Activation of the NLRP3 inflammasome typically requires two initiating signals. Toll-like receptor (TLR) and NOD-like receptor (NLR) agonists activate the transcription of pro-inflammatory cytokine genes through an NF-${\kappa}B$-dependent priming signal. Following exposure to extracellular ATP, stimulation of the P2X purinoreceptor-7 ($P2X_7R$), which results in $K^+$ efflux, is required as a second signal for NLRP3 inflammasome formation. Alternative models for NLRP3 activation involve lysosomal destabilization and phagocytic NADPH oxidase and /or mitochondria-dependent reactive oxygen species (ROS) production. In this review we examine regulatory mechanisms that activate the NLRP3 inflammasome pathway. Furthermore, we discuss the potential roles of NLRP3 in metabolic and cognitive diseases, including obesity, type 2 diabetes mellitus, Alzheimer's disease, and major depressive disorder. Novel therapeutics involving inflammasome activation may result in possible clinical applications in the near future.

Keywords

References

  1. Alcocer-Gomez, E., de Miguel, M., Casas-Barquero, N., Nunez-Vasco, J., Sanchez-Alcazar, J.A., Fernandez-Rodriguez, A., and Cordero, M.D. (2013). NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain Behav. Immun. 36, 111-117.
  2. Allen, I.C., Scull, M.A., Moore, C.B., Holl, E.K., McElvania-TeKippe, E., Taxman, D.J., Guthrie E.H., Pickles, R.J., and Ting, J.P. (2009). The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30, 556-565. https://doi.org/10.1016/j.immuni.2009.02.005
  3. Balistreri, C.R., Colonna-Romano, G., Lio, D., Candore, G., and Caruso, C. (2009). TLR4 polymorphisms and ageing: implications for the pathophysiology of age-related diseases. J. Clin. Immunol. 29, 406-415. https://doi.org/10.1007/s10875-009-9297-5
  4. Bauernfeind, F.G., Horvath, G., Stutz, A., Alnemri, E.S., MacDonald, K., Speert, D., Fernandes-Alnemri, T., Wu, J., Monks, B.G., Fitzgerald, K.A., et al. (2009). Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183, 787-791. https://doi.org/10.4049/jimmunol.0901363
  5. Chatterjee, S., Rana, R., Corbett, J., Kadiiska, M.B., Goldstein, J., and Mason, R.P. (2012). P2X7 receptor-NADPH oxidase axis mediates protein radical formation and Kupffer cell activation in carbon tetrachloride-mediated steatohepatitis in obese mice. Free Radic. Biol. Med. 52, 1666-1679. https://doi.org/10.1016/j.freeradbiomed.2012.02.010
  6. Davis, B.K., Wen, H., and Ting, J.P. (2011). The Inflammasome NLRs in immunity, inflammation, and associated diseases. Ann. Rev. Immun 29, 707-735. https://doi.org/10.1146/annurev-immunol-031210-101405
  7. Devi, T.S., Lee, I., Huttemann, M., Kumar, A., Nantwi, K.D., and Singh, L.P. (2012). TXNIP links innate host defense mechanisms to oxidative stress and inflammation in retinal Muller glia under chronic hyperglycemia: implications for diabetic retinopathy. Exp. Diabetes Res. 2012, 438238.
  8. Donath, M.Y., and Shoelson, S.E. (2011). Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 11, 98-107. https://doi.org/10.1038/nri2925
  9. Dostert, C., Petrilli, V., Van Bruggen, R., Steele, C., Mossman, B.T., and Tschopp J. (2008). Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674-677. https://doi.org/10.1126/science.1156995
  10. Dowlati, Y., Herrmann, N., Swardfager, W., Liu, H., Sham, L., Reim, E.K., and Lanctot, K.L. (2010). A meta-analysis of cytokines in major depression. Biol. Psychiatry 67, 446-457. https://doi.org/10.1016/j.biopsych.2009.09.033
  11. Eizirik, D.L., Sammeth, M, Bouckenooghe, T., Bottu, G., Sisino, G., Igoillo-Esteve, M., Ortis, F., Santin, I., Colli, M.L., Barthson, J., et al. (2012). The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet. 8, e1002552. https://doi.org/10.1371/journal.pgen.1002552
  12. Emanuela, F., Grazia, M., Marco de, R., Maria Paola, L., Giorgio, F., and Marco, B. (2012). Inflammation as a link between obesity and metabolic syndrome. J. Nutr. Metab. 2012, 476380.
  13. Faustin, B., Lartigue, L., Bruey, J.M., Luciano, F., Sergienko, E., Bailly-Maitre, B., Volkmann, N., Hanein, D., Rouiller, I., and Reed, J.C. (2007). Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol. Cell 25, 713-724. https://doi.org/10.1016/j.molcel.2007.01.032
  14. Feve, B., and Bastard, J.P. (2009). The role of interleukins in insulin resistance and type 2 diabetes mellitus. Nat. Rev. Endocrinol. 5, 305-311 https://doi.org/10.1038/nrendo.2009.62
  15. Finucane, M.M., Stevens, G.A., Cowan, M.J., Danaei, G., Lin, J.K., Paciorek, C.J., Singh, G.M., Gutierrez, H.R., Lu, Y., Bahalim, A.N., et al. (2011). National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 337, 557-567.
  16. Franchi, L., Eigenbrod, T., and Nunez, G. (2009). Cutting edge: TNF-a mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J. Immunol. 183, 792-796. https://doi.org/10.4049/jimmunol.0900173
  17. Fujihara, M., Muroi, M., Tanamoto, K., Suzuki, T., Azuma, H., and Ikeda, H. (2003). Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol. Ther. 100, 171-194. https://doi.org/10.1016/j.pharmthera.2003.08.003
  18. Glass, C.K., Saijo, K., Winner, B., Marchetto, M.C., and Gage, F.H. (2010). Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918-934. https://doi.org/10.1016/j.cell.2010.02.016
  19. Glinsky, G.V. (2008). SNP-guided microRNA maps (MirMaps) of 16 common human disorders identify a clinically accessible therapy reversing transcriptional aberrations of nuclear import and inflammasome pathways. Cell Cycle 7, 3564-3576. https://doi.org/10.4161/cc.7.22.7073
  20. Guarda, G., Zenger, M., Yazdi, A.S., Schroder, K., Ferrero, I., Menu, P., Tardivel, A., Mattmann, C., and Tschopp, J. (2011). Differential expression of NLRP3 among hematopoietic cells. J. Immunol. 186, 2529-2534. https://doi.org/10.4049/jimmunol.1002720
  21. Halle, A., Hornung, V., Petzold, G.C., Stewart, C.R., Monks, B.G., Reinheckel, T., Fitzgerald, K.A., Latz, E., Moore, K.J., and Golenbock, D.T. (2008). The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol. 9, 857-865. https://doi.org/10.1038/ni.1636
  22. Heid, M.E., Keyel, P.A., Kamga, C., Shiva, S., Watkins, S.C., and Salter, R.D. (2013). Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. J. Immunol. 191, 5230-5238. https://doi.org/10.4049/jimmunol.1301490
  23. Heneka, M.T., Kummer, M.P., Stutz, A., Delekate, A., Schwartz, S., Vieira-Saecker, A., Griep, A., Axt, D., Remus, A., Tzeng, TC., et al. (2013). NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493, 674-678.
  24. Hentze, H., Lin, X.Y., Choi, M.S., and Porter, A.G. (2003). Critical role for cathepsin B in mediating caspase-1-dependent interleukin-18 maturation and caspase-1-independent necrosis triggered by the microbial toxin nigericin. Cell Death Differ. 10, 956-968. https://doi.org/10.1038/sj.cdd.4401264
  25. Hiscott, J., Marois, J., Garoufalis, J., D'Addario, M., Roulston, A., Kwan, I., Pepin, N., Lacoste, J., Nguyen, H., Bensi, G., et al. (1993). Characterization of a functional NF-kappa B site in the human interleukin 1 beta promoter: evidence for a positive autoregulatory loop. Mol. Cell. Biol. 13, 6231-6240.
  26. Hook, V.Y., Kindy, M., and Hook, G. (2008). Inhibitors of cathepsin B Improve memory and reduce b-amyloid in transgenic Alzheimer disease mice expressing the wild-type, but not the Swedish mutant, b-secretase site of the amyloid precursor protein. J. Biol. Chem. 283, 7745-7753. https://doi.org/10.1074/jbc.M708362200
  27. Hornung, V., Bauernfeind, F., Halle, A., Samstad, E.O., Kono, H., Rock, K.L., Fitzgerald, K.A., and Latz, E. (2008). Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847-856. https://doi.org/10.1038/ni.1631
  28. Hornung, V., Ablasser, A., Charrel-Dennis, M., Bauernfeind, F., Horvath, G., Caffrey, D.R., Latz, E., and Fitzgerald, K.A. (2009). AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514-518. https://doi.org/10.1038/nature07725
  29. Itagaki, S., McGeer, P.L., Akiyama, H., Zhu, S., and Selkoe, D. (1989). Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J. Neuroimmunol. 24, 173-182. https://doi.org/10.1016/0165-5728(89)90115-X
  30. Iwata, M., Ota, K.T., and Duman, R.S. (2013). The inflammasome: pathways linking psychological stress, depression, and systemic illnesses. Brain Behav. Immun. 31, 105-114. https://doi.org/10.1016/j.bbi.2012.12.008
  31. Jankowsky, J.L., Slunt, H.H., Ratovitski, T., Jenkins, N.A., Copeland, N.G., and Borchelt, D.R. (2001). Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol. Eng. 17, 157-165. https://doi.org/10.1016/S1389-0344(01)00067-3
  32. Kahn, S.E., Hull, R.L., and Utzschneider, K.M.. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840-846. https://doi.org/10.1038/nature05482
  33. Kanneganti, T.D., Lamkanfi, M., Kim, Y.G., Chen, G., Park, J.H., Franchi, L., Vandenabeele, P., and Nunez, G. (2007). Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26, 433-443. https://doi.org/10.1016/j.immuni.2007.03.008
  34. Kessler, R.C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K.R., Rush, A.J., Walters, E.E., Wang, P.S., and National Comorbidity Survey Replication (2003). The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). J. Am. Med. Assoc. 289, 3095-3105. https://doi.org/10.1001/jama.289.23.3095
  35. Koo, J.W., and Duman, R.S. (2008). IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc. Natl. Acad. Sci. USA 105, 751-756. https://doi.org/10.1073/pnas.0708092105
  36. Korcok, J., Raimundo, L.N., Ke, H.Z., Sims, S.M., and Dixon, S.J. (2004). Extracellular nucleotides act through P2X7 receptors to activate NF-kB in osteoclasts. J. Bone Miner. Res. 19, 642-651. https://doi.org/10.1359/JBMR.040108
  37. Kotas, M.E., Jurczak, M.J., Annicelli, C., Gillum, M.P., Cline, G.W., Shulman, G.I., and Medzhitov, R. (2013). Role of caspase-1 in regulation of triglyceride metabolism. Proc. Natl. Acad. Sci. USA 110, 4810-4815. https://doi.org/10.1073/pnas.1301996110
  38. Lamkanfi, M., Mueller, J.L., Vitari, A.C., Misaghi, S., Fedorova, A., Deshayes, K., Lee, W.P., Hoffman, H.M., and Dixit, V.M. (2009). Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J. Cell Biol. 187, 61-70. https://doi.org/10.1083/jcb.200903124
  39. Latz, E., Xiao, T.S., and Stutz, A. (2013). Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13, 397-411. https://doi.org/10.1038/nri3452
  40. Leemans, J.C., Cassel, S.L., and Sutterwala, F.S. (2011). Sensing damage by the NLRP3 inflammasome. Immunol. Rev. 243, 152-162. https://doi.org/10.1111/j.1600-065X.2011.01043.x
  41. Liu, Y., Xiao, Y., and Li, Z. (2011). P2X7 receptor positively regulates MyD88-dependent NF-kB activation. Cytokine 55, 229-236. https://doi.org/10.1016/j.cyto.2011.05.003
  42. Lu, M., Sun, X.L., Qiao, C., Liu, Y., Ding, J.H., and Hu, G. (2014). Uncoupling protein 2 deficiency aggravates astrocytic endoplasmic reticulum stress and nod-like receptor protein 3 inflammasome activation. Neurobiol. Aging 35, 421-430. https://doi.org/10.1016/j.neurobiolaging.2013.08.015
  43. Ludlow, L.E., Johnstone, R.W., and Clarke, C.J. (2005). The HIN-200 family: more than interferon-inducible genes? Exp. Cell Res. 308, 1-17. https://doi.org/10.1016/j.yexcr.2005.03.032
  44. Maes, M., Bosmans, E., Meltzer, H.Y., Scharpe, S., and Suy, E. (1993). Interleukin-1 beta: a putative mediator of HPA axis hyperactivity in major depression? Am. J. Psychiatry 150, 1189-1193. https://doi.org/10.1176/ajp.150.8.1189
  45. Mandrup-Poulsen, T., Pickersgill, L., and Donath, M.Y. (2010). Blockade of interleukin 1 in type 1 diabetes mellitus. Nat. Rev. Endocrinol. 6, 158-166. https://doi.org/10.1038/nrendo.2009.271
  46. Mariathasan, S., Newton, K., Monack, D.M., Vucic, D., French, D.M., Lee, W.P., Roose-Girma, M., Erickson, S., and Dixit, V.M. (2004). Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213-218. https://doi.org/10.1038/nature02664
  47. Martinon, F., Burns, K., and Tschopp, J. (2002). The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-$1{\beta}$. Mol. Cell 10, 417-426. https://doi.org/10.1016/S1097-2765(02)00599-3
  48. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A., and Tschopp, J. (2006). Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237-241. https://doi.org/10.1038/nature04516
  49. Martinon, F., Mayor, A., and Tschopp, J. (2009). The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27, 229-265. https://doi.org/10.1146/annurev.immunol.021908.132715
  50. Masters, S.L., Dunne, A., Subramanian, S.L., Hull, R.L., Tannahill, G.M., Sharp, F.A., Becker, C., Franchi, L., Yoshihara, E., Chen, Z., et al. (2010). Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1b in type 2 diabetes. Nat. Immunol. 11, 897-904. https://doi.org/10.1038/ni.1935
  51. McGeer, P.L., Itagaki, S., Tago, H., and McGeer, E.G. (1987). Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLADR. Neurosci. Lett. 79, 195-200. https://doi.org/10.1016/0304-3940(87)90696-3
  52. Menu, P., and Vince, J.E. (2011). The NLRP3 inflammasome in health and disease: the good, the bad and the ugly. Clin. Exp. Immunol. 166, 1-15. https://doi.org/10.1111/j.1365-2249.2011.04440.x
  53. Meyer-Luehmann, M., Spires-Jones, T.L., Prada, C., Garcia-Alloza, M., de Calignon, A., Rozkalne, A., Koenigsknecht-Talboo, J., Holtzman, D.M., Bacskai, B.J., and Hyman, B.T. (2008). Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer's disease. Nature 451, 720-724. https://doi.org/10.1038/nature06616
  54. Mraz, M., Lacinova, Z., Drapalova, J., Haluzikova, D., Horinek, A., Matoulek, M., Trachta, P., Kavalkova, P., Svacina, S., and Haluzik, M. (2011). The effect of verylow- calorie diet on mRNA expression of inflammation-related genes in subcutaneous adipose tissue and peripheral monocytes of obese patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 96, E606-613. https://doi.org/10.1210/jc.2010-1858
  55. Nakahira, K., Haspel, J.A., Rathinam, V.A., Lee, S.J., Dolinay, T., Lam, H.C., Englert, J.A., Rabinovitch, M., Cernadas, M., Kim, H.P., et al. (2011). Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222-230.
  56. Parvathenani, L.K., Tertyshnikova, S., Greco, C.R., Roberts, S.B., Robertson, B., and Posmantur, R. (2003). P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer's disease. J. Biol. Chem. 278, 13309-13317. https://doi.org/10.1074/jbc.M209478200
  57. Pelegrin, P., and Surprenant, A. (2006). Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J. 25, 5071-5082. https://doi.org/10.1038/sj.emboj.7601378
  58. Pelegrin, P., and Surprenant, A. (2007). Pannexin-1 couples to maitotoxin- and nigericin-induced interleukin-1beta release through a dye uptakeindependent pathway. J. Biol. Chem. 282, 2386-2394. https://doi.org/10.1074/jbc.M610351200
  59. Petrilli, V., Papin, S., Dostert, C., Mayor, A., Martinon, F., and Tschopp, J. (2007). Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 14, 1583-1689. https://doi.org/10.1038/sj.cdd.4402195
  60. Poyet, J.L., Srinivasula, S.M., Tnani, M., Razmara, M., Fernandes-Alnemri, T., and Alnemri, E.S. (2001). Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J. Biol. Chem. 276, 28309-28313. https://doi.org/10.1074/jbc.C100250200
  61. Qu, Y., Misaghi, S., Newton, K., Gilmour, L.L., Louie, S., Cupp, J.E., Dubyak, G.R., Hackos, D., and Dixit, V.M. (2006). Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J. Immunol. 186, 6553-6561.
  62. Qu, Y., Misaghi, S., Newton, K., Gilmour, L.L., Louie, S., Cupp, J.E., Dubyak, G.R., Hackos, D., and Dixit, V.M. (2011). Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J. Immunol. 186, 6553-6561. https://doi.org/10.4049/jimmunol.1100478
  63. Raison, C.L., and Miller, A.H. (2013). Malaise, melancholia and madness: The evolutionary legacy of an inflammatory bias. Brain Behav. Immun. 13, 467-475.
  64. Saijo, K., Winner, B., Carson, C.T., Collier, J.G., Boyer, L., Rosenfeld, M.G., Gage, F.H., and Glass, C.K. (2009). A Nurr1/CoR EST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137, 47-59. https://doi.org/10.1016/j.cell.2009.01.038
  65. Sautin, Y.Y., Nakagawa, T., Zharikov, S., and Johnson, R.J. (2007). Adverse effects of the classical antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am. J. Physiol. Cell Physiol. 293, C584-C596 https://doi.org/10.1152/ajpcell.00600.2006
  66. Schroder, K., and Tschopp, J. (2010). The inflammasomes. Cell 140, 821-832. https://doi.org/10.1016/j.cell.2010.01.040
  67. Schroder, K., Zhou, R., and Tschopp, J. (2010). The NLRP3 inflammasome: a sensor for metabolic danger? Science 327, 296-300. https://doi.org/10.1126/science.1184003
  68. Scott, P., Ma, H., Viriyakosol, S., Terkeltaub, R., and Liu-Bryan, R. (2006). Engagement of CD14 mediates the inflammatory potential of monosodium urate crystals. J. Immunol. 177, 6370-6378. https://doi.org/10.4049/jimmunol.177.9.6370
  69. Shoelson, S.E., Lee, J., and Goldfine, A.B. (2006). Inflammation and insulin resistance. J. Clin. Invest. 116, 1793-1801. https://doi.org/10.1172/JCI29069
  70. Skeldon, A.M., Faraj, M., and Saleh, M. (2014). Caspases and inflammasomes in metabolic inflammation. Immunol. Cell Biol. 92, 304-313. https://doi.org/10.1038/icb.2014.5
  71. Solini, A., Menini, S., Rossi, C., Ricci, C., Santini, E., Blasetti Fantauzzi, C., Iacobini, C., and Pugliese, G. (2013). The purinergic 2X7 receptor participates in renal inflammation and injury induced by high-fat diet: possible role of NLRP3 inflammasome activation. J. Pathol. 231, 342-353. https://doi.org/10.1002/path.4237
  72. Stienestra, R., Joosten, L.A., Koenen, T., van Tits, B., van Diepen, J.A., van den Berg, S.A., Rensen, P.C., Voshol, P.J., Fantuzzi, G., Hijmans, A., et al. (2010). The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Metabolism 12, 593-605.
  73. Stienestra, R., van Diepen, J.A., Tack, C.J., Zaki, M.H., van de Veerdonk, F.L., Perera, D., Neale, G.A., Hooiveld, G.J., Hijmans, A., Vroegrijk, I., et al. (2011). Inflammasome is a central player in the induction of obesity and insulin resistance. Proc. Natl. Acad. Sci. USA 108, 15324-15329. https://doi.org/10.1073/pnas.1100255108
  74. Sun, S., Xia, S., Ji, Y., Kersten, S., and Qi, L. (2012). The ATP-P2 x 7 signaling axis is dispensable for obesity-associated inflammasome activation in adipose tissue. Diabetes 61, 1471-1478. https://doi.org/10.2337/db11-1389
  75. Trnka, J., Blaikie, F.H., Logan, A., Smith, R.A., and Murphy, M.P. (2009). Antioxidant properties of MitoTEMPOL and its hydroxylamine. Free Radic Res. 43, 4-12. https://doi.org/10.1080/10715760802582183
  76. Vandanmagsar, B., Youm, Y.H., Ravussin, A., Galgani, J.E., Stadler, K., Mynatt, R.L., Ravussin, E., Stephens, J.M., and Dixit, V.D. (2011). The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17, 179-188. https://doi.org/10.1038/nm.2279
  77. van Diepen, J.A., Stienstra, R., Vroegrijk, I.O., van den Berg, S.A., Salvatori, D., Hooiveld, G.J., Kersten, S., Tack, C.J., Netea, M.G., Smit, J.W., et al. (2013). Caspase-1 deficiency in mice reduces intestinal triglyceride absorption and hepatic triglyceride secretion. J. Lipid Res. 54, 448-456. https://doi.org/10.1194/jlr.M031963
  78. Wang, H., Capell, W., Yoon, J.H., Faubel, S., and Eckel, R.H. (2014a). Obesity development in caspase-1-deficient mice. Int. J. Obes. (Lond) 38, 152-155. https://doi.org/10.1038/ijo.2013.59
  79. Wang, L., Zhai, Y.Q., Xu, L.L., Qiao, C., Sun, X.L., Ding, J.H., Lu, M., and Hu, G. (2014b). Metabolic inflammation exacerbates dopaminergic neuronal degeneration in response to acute MPTP challenge in type 2 diabetes mice. Exp. Neurol. 251, 22-29. https://doi.org/10.1016/j.expneurol.2013.11.001
  80. Warner-Schmidt, J.L., Vanover, K.E., Chen, E.Y., Marshall, J.J., and Greengard, P. (2011). Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflammatory drugs in mice and humans. Proc. Natl. Acad. Sci. USA 108, 9262-9267. https://doi.org/10.1073/pnas.1104836108
  81. Wellen, K.E., and Hotamisligil, G.S. (2005). Inflammation, stress, and diabetes. J. Clin. Invest. 115, 1111-1119. https://doi.org/10.1172/JCI200525102
  82. Wen, H., Gris, D., Lei, Y., Jha, S., Zhang, L., Huang, M.T., Brickey, W.J., and Ting, J.P. (2011). Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408-415. https://doi.org/10.1038/ni.2022
  83. World Health Organization. (2002). The world health report 2002: Reducing risks, promoting healthy life. Geneva WHO 1-167.
  84. World Health Organization. (2011). Global status report on noncommunicable diseases 2010. Geneva WHO 1-162.
  85. Zhang, Y., Liu, L., Peng, Y.L., Liu, Y.Z., Wu, T.Y., Shen, X.L., Zhou, J.R., Sun, D.Y., Huang, A.J., Wang, X., et al. (2013). Involvement of inflammasome activation in lipopolysaccharide-induced mice depressive-like behaviors. CNS Neurosci. Ther. 20, 119-124.
  86. Zhou, R., Tardivel, A., Thorens, B., Choi, I., and Tschopp, J. (2010). Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 11, 136-140. https://doi.org/10.1038/ni.1831

Cited by

  1. High Sensitivity C-reactive Protein may be used as a Marker for Cognitive Impairment in Obese Egyptian Middle Age Females vol.9, pp.1, 2016, https://doi.org/10.3923/ajcn.2017.17.23
  2. The neuroprotection of Sinomenine against ischemic stroke in mice by suppressing NLRP3 inflammasome via AMPK signaling vol.40, 2016, https://doi.org/10.1016/j.intimp.2016.09.024
  3. Human Invariant NKT Cells Induce IL-1β Secretion by Peripheral Blood Monocytes via a P2X7-Independent Pathway vol.197, pp.6, 2016, https://doi.org/10.4049/jimmunol.1600790
  4. Innate immune proteins as biomarkers for CNS injury: critical evaluation (WO2013119673 A1) vol.25, pp.2, 2015, https://doi.org/10.1517/13543776.2014.972937
  5. Role of the NLRP3 inflammasome in the transient release of IL-1β induced by monosodium urate crystals in human fibroblast-like synoviocytes vol.12, pp.1, 2015, https://doi.org/10.1186/s12950-015-0070-7
  6. Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK vol.286, pp.1, 2015, https://doi.org/10.1016/j.taap.2015.03.010
  7. Astragaloside IV and cycloastragenol are equally effective in inhibition of endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation in the endothelium vol.169, 2015, https://doi.org/10.1016/j.jep.2015.04.030
  8. The Expression Changes of Inflammasomes in the Aging Rat Kidneys vol.71, pp.6, 2016, https://doi.org/10.1093/gerona/glv078
  9. P2X7 receptor antagonism modulates IL-1β and MMP9 in human atherosclerotic vessels vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-05137-y
  10. Naringin inhibits growth and induces apoptosis by a mechanism dependent on reduced activation of NF-κB/COX-2-caspase-1 pathway in HeLa cervical cancer cells vol.45, pp.5, 2014, https://doi.org/10.3892/ijo.2014.2617
  11. NLRP3 inflammasome-driven pathways in depression: Clinical and preclinical findings vol.64, 2017, https://doi.org/10.1016/j.bbi.2017.03.002
  12. NLRP3 Inflammasome Plays an Important Role in the Pathogenesis of Collagen-Induced Arthritis vol.2016, 2016, https://doi.org/10.1155/2016/9656270
  13. Connexin Channels at the Glio-Vascular Interface: Gatekeepers of the Brain vol.42, pp.9, 2017, https://doi.org/10.1007/s11064-017-2313-x
  14. Exercise amelioration of depression-like behavior in OVX mice is associated with suppression of NLRP3 inflammasome activation in hippocampus vol.307, 2016, https://doi.org/10.1016/j.bbr.2016.03.044
  15. Fluoxetine Inhibits NLRP3 Inflammasome Activation: Implication in Depression vol.19, pp.9, 2016, https://doi.org/10.1093/ijnp/pyw037
  16. Streptozotocin induced oxidative stress, innate immune system responses and behavioral abnormalities in male mice vol.340, 2017, https://doi.org/10.1016/j.neuroscience.2016.11.003
  17. Protective effects of exercise in metabolic disorders are mediated by inhibition of mitochondrial-derived sterile inflammation vol.85, pp.6, 2015, https://doi.org/10.1016/j.mehy.2015.10.026
  18. ASC provides a potential link between depression and inflammatory disorders: A clinical study of depressed Iranian medical students vol.70, pp.4, 2016, https://doi.org/10.3109/08039488.2015.1100328
  19. Mangiferin suppresses endoplasmic reticulum stress in perivascular adipose tissue and prevents insulin resistance in the endothelium 2018, https://doi.org/10.1007/s00394-017-1441-z
  20. NLRP3 inflammasome activation mediates estrogen deficiency-induced depression- and anxiety-like behavior and hippocampal inflammation in mice vol.56, 2016, https://doi.org/10.1016/j.bbi.2016.02.022
  21. Pattern Recognition and Signaling Mechanisms of RIG-I and MDA5 vol.5, 2014, https://doi.org/10.3389/fimmu.2014.00342
  22. Extracellular ATP and other nucleotides—ubiquitous triggers of intercellular messenger release vol.12, pp.1, 2016, https://doi.org/10.1007/s11302-015-9483-2
  23. Immune-mediated processes in neurodegeneration: where do we stand? vol.263, pp.9, 2016, https://doi.org/10.1007/s00415-016-8052-0
  24. Sleep Fragmentation Induces Activation of NOD-Like Receptor Protein-3 Inflammasome in Rat Hippocampus vol.8, pp.1, 2017, https://doi.org/10.17241/smr.2017.00017
  25. Apigenin reverses depression-like behavior induced by chronic corticosterone treatment in mice vol.774, 2016, https://doi.org/10.1016/j.ejphar.2016.01.015
  26. ROS-Mediated NLRP3 Inflammasome Activation in Brain, Heart, Kidney, and Testis Ischemia/Reperfusion Injury vol.2016, 2016, https://doi.org/10.1155/2016/2183026
  27. Association between functional NLRP3 polymorphisms and susceptibility to autoimmune and inflammatory diseases: a meta-analysis vol.25, pp.14, 2016, https://doi.org/10.1177/0961203316644336
  28. Depression and Chronic Liver Diseases: Are There Shared Underlying Mechanisms? vol.10, 2017, https://doi.org/10.3389/fnmol.2017.00134
  29. Paeoniflorin down-regulates ATP-induced inflammatory cytokine production and P2X7R expression on peripheral blood mononuclear cells from patients with primary Sjögren's syndrome vol.28, pp.1, 2015, https://doi.org/10.1016/j.intimp.2015.05.023
  30. The Immune System and the Role of Inflammation in Perinatal Depression vol.32, pp.4, 2016, https://doi.org/10.1007/s12264-016-0048-3
  31. Benzyl isothiocyanate inhibits inflammasome activation in E. coli LPS-stimulated BV2 cells vol.38, pp.3, 2016, https://doi.org/10.3892/ijmm.2016.2667
  32. Ilexgenin A inhibits endoplasmic reticulum stress and ameliorates endothelial dysfunction via suppression of TXNIP/NLRP3 inflammasome activation in an AMPK dependent manner vol.99, 2015, https://doi.org/10.1016/j.phrs.2015.05.012
  33. The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation by promoting proteasomal degradation of NLRP3 vol.7, 2016, https://doi.org/10.1038/ncomms13727
  34. Mangiferin inhibits endoplasmic reticulum stress-associated thioredoxin-interacting protein/NLRP3 inflammasome activation with regulation of AMPK in endothelial cells vol.64, pp.3, 2015, https://doi.org/10.1016/j.metabol.2014.11.008
  35. Astragaloside IV attenuates cognitive impairments induced by transient cerebral ischemia and reperfusion in mice via anti-inflammatory mechanisms vol.639, 2017, https://doi.org/10.1016/j.neulet.2016.12.046
  36. The effects of apigenin on lipopolysaccharide-induced depressive-like behavior in mice vol.594, 2015, https://doi.org/10.1016/j.neulet.2015.03.040
  37. Inflammasome Involvement in Alzheimer’s Disease vol.54, pp.1, 2016, https://doi.org/10.3233/JAD-160197
  38. Brain inflammasomes in stroke and depressive disorders: Regulation by oestrogen vol.30, pp.2, 2018, https://doi.org/10.1111/jne.12482
  39. ROS- and P2X7R-mediated NLRP3 inflammasome activation in cardiac fibroblasts under high glucose vol.22, pp.3, 2018, https://doi.org/10.1111/jcmm.13464
  40. NLR-Dependent Regulation of Inflammation in Multiple Sclerosis vol.8, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2017.02012
  41. Toll-like receptor 4 modulation influences human neural stem cell proliferation and differentiation vol.9, pp.3, 2018, https://doi.org/10.1038/s41419-017-0139-8
  42. The role of Ca2+ in acid-sensing ion channel 1a-mediated chondrocyte pyroptosis in rat adjuvant arthritis pp.1530-0307, 2018, https://doi.org/10.1038/s41374-018-0135-3
  43. Recombinant human proteoglycan-4 reduces phagocytosis of urate crystals and downstream nuclear factor kappa B and inflammasome activation and production of cytokines and chemokines in human and murine macrophages vol.20, pp.1, 2018, https://doi.org/10.1186/s13075-018-1693-x
  44. The Potential Role of the NLRP3 Inflammasome Activation as a Link Between Mitochondria ROS Generation and Neuroinflammation in Postoperative Cognitive Dysfunction vol.13, pp.1662-5102, 2019, https://doi.org/10.3389/fncel.2019.00073
  45. Inflammasomes in Mycobacterium tuberculosis -Driven Immunity vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/2309478
  46. The Inflammatory Bowel Disease–Associated Autophagy Gene Atg16L1T300A Acts as a Dominant Negative Variant in Mice vol.198, pp.6, 2014, https://doi.org/10.4049/jimmunol.1502652
  47. Soluble Uric Acid Activates the NLRP3 Inflammasome vol.7, pp.None, 2014, https://doi.org/10.1038/srep39884
  48. Pretreatment with obestatin inhibits the development of acetic acid-induced colitis in rats vol.14, pp.4, 2014, https://doi.org/10.5114/aoms.2016.58749
  49. Structural Insights of Benzenesulfonamide Analogues as NLRP3 Inflammasome Inhibitors: Design, Synthesis, and Biological Characterization vol.61, pp.12, 2018, https://doi.org/10.1021/acs.jmedchem.8b00733
  50. Inhibition of P2X7R-NLRP3 Inflammasome Activation by Pleurotus citrinopileatus: A Possible Protective Role in Alcoholic Hepatosteatosis vol.66, pp.50, 2018, https://doi.org/10.1021/acs.jafc.8b05756
  51. The Roles of TIF1γ in Cancer vol.9, pp.None, 2014, https://doi.org/10.3389/fonc.2019.00979
  52. Glucocorticoid-Driven NLRP3 Inflammasome Activation in Hippocampal Microglia Mediates Chronic Stress-Induced Depressive-Like Behaviors vol.12, pp.None, 2014, https://doi.org/10.3389/fnmol.2019.00210
  53. Involvement of NLRP3 inflammasome in methamphetamine-induced microglial activation through miR-143/PUMA axis vol.301, pp.None, 2019, https://doi.org/10.1016/j.toxlet.2018.10.020
  54. Ginsenoside Rg1 protects against H 2 O 2 -induced neuronal damage due to inhibition of the NLRP1 inflammasome signalling pathway in hippocampal neurons in vitro vol.43, pp.2, 2014, https://doi.org/10.3892/ijmm.2018.4005
  55. The Crohn’s Disease Risk Factor IRGM Limits NLRP3 Inflammasome Activation by Impeding Its Assembly and by Mediating Its Selective Autophagy vol.73, pp.3, 2014, https://doi.org/10.1016/j.molcel.2018.11.018
  56. The depressed heart vol.3, pp.2, 2014, https://doi.org/10.4103/hm.hm_13_19
  57. Role of Chronic Administration of Antidepressant Drugs in the Prenatal Stress-Evoked Inflammatory Response in the Brain of Adult Offspring Rats: Involvement of the NLRP3 Inflammasome-Related Pathway vol.56, pp.8, 2014, https://doi.org/10.1007/s12035-018-1458-1
  58. Discovery of Second-Generation NLRP3 Inflammasome Inhibitors: Design, Synthesis, and Biological Characterization vol.62, pp.21, 2019, https://doi.org/10.1021/acs.jmedchem.9b01155
  59. The World Goes Bats: Living Longer and Tolerating Viruses vol.32, pp.1, 2014, https://doi.org/10.1016/j.cmet.2020.06.013
  60. Toll-Like receptor 4 (TLR4) polymorphism rs2149356 and risk of gout in a Spanish cohort vol.39, pp.10, 2020, https://doi.org/10.1080/15257770.2020.1780438
  61. Evaluation of Potential Risks to Human Health and Ecosystems During Exposure to Discarded Laboratory Chemical Mixtures by In Vitro Multimodel Approach vol.6, pp.4, 2014, https://doi.org/10.1089/aivt.2020.0020
  62. Structural insights of sulfonamide-based NLRP3 inflammasome inhibitors: design, synthesis, and biological characterization vol.30, pp.2, 2014, https://doi.org/10.1007/s00044-020-02692-4
  63. Ecklonia cava Attenuates PM2.5-Induced Cognitive Decline through Mitochondrial Activation and Anti-Inflammatory Effect vol.19, pp.3, 2014, https://doi.org/10.3390/md19030131
  64. RGFP966 is protective against lipopolysaccharide-induced depressive-like behaviors in mice by inhibiting neuroinflammation and microglial activation vol.101, pp.no.pb, 2021, https://doi.org/10.1016/j.intimp.2021.108259
  65. NLRP1 inflammasome involves in learning and memory impairments and neuronal damages during aging process in mice vol.17, pp.1, 2021, https://doi.org/10.1186/s12993-021-00185-x