References
- Akaike, M., Che, W., Marmarosh, N.L., Ohta, S., Osawa, M., Ding, B., Berk, B.C., Yan, C., and Abe, J. (2004). The hinge-helix 1 region of peroxisome proliferator-activated receptor gamma1 (PPARgamma1) mediates interaction with extracellular signalregulated kinase 5 and PPARgamma1 transcriptional activation: involvement in flow-induced PPARgamma activation in endothelial cells. Mol. Cell. Biol. 24, 8691-8704. https://doi.org/10.1128/MCB.24.19.8691-8704.2004
- Ando, J., and Yamamoto, K. (2009). Vascular mechanobiology: endothelial cell responses to fluid shear stress. Circ. J. 73, 1983-1992. https://doi.org/10.1253/circj.CJ-09-0583
- Barakat, A.I. (1999). Responsiveness of vascular endothelium to shear stress: potential role of ion channels and cellular cytoskeleton (review). Int. J. Mol. Med. 4, 323-332.
- Barton, M., Baretella, O., and Meyer, M.R. (2012). Obesity and risk of vascular disease: importance of endothelium-dependent vasoconstriction. Br. J. Pharmacol. 165, 591-602. https://doi.org/10.1111/j.1476-5381.2011.01472.x
- Berk, B.C., Min, W., Yan, C., Surapisitchat, J., Liu, Y., and Hoefen, R. (2002). Atheroprotective mechanisms activated by fluid shear stress in endothelial cells. Drug News Perspect. 15, 133-139. https://doi.org/10.1358/dnp.2002.15.3.704684
- Boo, Y.C., Hwang, J., Sykes, M., Michell, B.J., Kemp, B.E., Lum, H., and Jo, H. (2002). Shear stress stimulates phosphorylation of eNOS at Ser(635) by a protein kinase A-dependent mechanism. Am. J. Physiol. Heart Circ. Physiol. 283, H1819-1828. https://doi.org/10.1152/ajpheart.00214.2002
- Chang, E., Heo, K.S., Woo, C.H., Lee, H., Le, N.T., Thomas, T.N., Fujiwara, K., and Abe, J. (2011). MK2 SUMOylation regulates actin filament remodeling and subsequent migration in endothelial cells by inhibiting MK2 kinase and HSP27 phosphorylation. Blood 117, 2527-2537. https://doi.org/10.1182/blood-2010-08-302281
- Cheng, J., Wang, D., Wang, Z., and Yeh, E.T. (2004). SENP1 enhances androgen receptor-dependent transcription through desumoylation of histone deacetylase 1. Mol. Cell. Biol. 24, 6021-6028. https://doi.org/10.1128/MCB.24.13.6021-6028.2004
- Chiu, Y.J., Kusano, K., Thomas, T.N., and Fujiwara, K. (2004). Endothelial cell-cell adhesion and mechanosignal transduction. Endothelium 11, 59-73. https://doi.org/10.1080/10623320490432489
- Chiu, S.Y., Asai, N., Costantini, F., and Hsu, W. (2008a). SUMO-specific protease 2 is essential for modulating p53-Mdm2 in development of trophoblast stem cell niches and lineages. PLoS Biol. 6, e310. https://doi.org/10.1371/journal.pbio.0060310
- Chiu, Y.J., McBeath, E., and Fujiwara, K. (2008b). Mechanotransduction in an extracted cell model: Fyn drives stretch- and flow-elicited PECAM-1 phosphorylation. J. Cell Biol. 182, 753-763. https://doi.org/10.1083/jcb.200801062
- Conway, D., and Schwartz, M.A. (2012). Lessons from the endothelial junctional mechanosensory complex. F1000 Biol. Rep. 4, 1.
- Curry, F.E., and Adamson, R.H. (2012). Endothelial glycocalyx: permeability barrier and mechanosensor. Ann. Biomed. Eng. 40, 828-839. https://doi.org/10.1007/s10439-011-0429-8
- Davies, P.F. (2009). Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat. Clin. Pract. Cardiovasc. Med. 6, 16-26. https://doi.org/10.1038/ncpcardio1397
- Davies, M.J., Gordon, J.L., Gearing, A.J., Pigott, R., Woolf, N., Katz, D., and Kyriakopoulos, A. (1993). The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E- selectin in human atherosclerosis. J. Pathol. 171, 223-229. https://doi.org/10.1002/path.1711710311
- Davis, M.E., Cai, H., Drummond, G.R., and Harrison, D.G. (2000). Regulation of endothelial nitric oxide synthase (eNOS) expression by laminar shear stress (abstract). Circulation 102, II-117.
- Davis, M.E., Cai, H., Drummond, G.R., and Harrison, D.G. (2001). Shear stress regulates endothelial nitric oxide synthase expression through c-Src by divergent signaling pathways. Circ. Res. 89, 1073-1080. https://doi.org/10.1161/hh2301.100806
- Dixit, M., Loot, A.E., Mohamed, A., Fisslthaler, B., Boulanger, C.M., Ceacareanu, B., Hassid, A., Busse, R., and Fleming, I. (2005). Gab1, SHP2, and protein kinase A are crucial for the activation of the endothelial NO synthase by fluid shear stress. Circ. Res. 97, 1236-1244. https://doi.org/10.1161/01.RES.0000195611.59811.ab
- Fleming, I., Fisslthaler, B., Dixit, M., and Busse, R. (2005). Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells. J. Cell Sci. 118, 4103-4111. https://doi.org/10.1242/jcs.02541
- Garin, G., Abe, J.I., Mohan, A., Lu, W., Yan, C., Newby, A.C., Rhaman, A., and Berk, B.C. (2007). Flow antagonizes TNF-alpha signaling in endothelial cells by inhibiting caspase-dependent PKC zeta processing. Circ. Res. 101, 97-105. https://doi.org/10.1161/CIRCRESAHA.107.148270
- Geiss-Friedlander, R., and Melchior, F. (2007). Concepts in sumoylation: a decade on. Nat. Rev. Mol. Cell. Biol. 8, 947-956. https://doi.org/10.1038/nrm2293
- Goel, R., Schrank, B.R., Arora, S., Boylan, B., Fleming, B., Miura, H., Newman, P.J., Molthen, R.C., and Newman, D.K. (2008). Site-specific effects of PECAM-1 on atherosclerosis in LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 28, 1996-2002. https://doi.org/10.1161/ATVBAHA.108.172270
- Gudi, S., Huvar, I., White, C.R., McKnight, N.L., Dusserre, N., Boss, G.R., and Frangos, J.A. (2003). Rapid activation of Ras by fluid flow is mediated by Galpha(q) and Gbetagamma subunits of heterotrimeric G proteins in human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 23, 994-1000. https://doi.org/10.1161/01.ATV.0000073314.51987.84
- Hajra, L., Evans, A.I., Chen, M., Hyduk, S.J., Collins, T., and Cybulsky, M.I. (2000). The NF-kappa B signal transduction pathway in aortic endothelial cells is primed for activation in regions predisposed to atherosclerotic lesion formation. Proc. Natl. Acad. Sci. USA 97, 9052-9057. https://doi.org/10.1073/pnas.97.16.9052
- Harry, B.L., Sanders, J.M., Feaver, R.E., Lansey, M., Deem, T.L., Zarbock, A., Bruce, A.C., Pryor, A.W., Gelfand, B.D., Blackman, B.R., et al. (2008). Endothelial cell PECAM-1 promotes atherosclerotic lesions in areas of disturbed flow in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol. 28, 2003-2008. https://doi.org/10.1161/ATVBAHA.108.164707
- Helmke, B.P., Goldman, R.D., and Davies, P.F. (2000). Rapid displacement of vimentin intermediate filaments in living endothelial cells exposed to flow. Circ. Res. 86, 745-752. https://doi.org/10.1161/01.RES.86.7.745
- Heo, K.S., Fujiwara, K., and Abe, J. (2011a). Disturbed-flow-mediated vascular reactive oxygen species induce endothelial dysfunction. Circ. J. 75, 2722-2730. https://doi.org/10.1253/circj.CJ-11-1124
- Heo, K.S., Lee, H., Nigro, P., Thomas, T., Le, N.T., Chang, E., McClain, C., Reinhart-King, C.A., King, M.R., Berk, B.C., et al. (2011b). PKCzeta mediates disturbed flow-induced endothelial apoptosis via p53 SUMOylation. J. Cell Biol. 193, 867-884. https://doi.org/10.1083/jcb.201010051
- Heo, K.S., Chang, E., Le, N.T., Cushman, H.J., Yeh, E.T.H., Fujiwara, K., and Abe, J.I. (2013). De-SUMOylation enzyme of sentrin/SUMO-specific protease 2 regulates disturbed flow-induced SUMOylation of ERK5 and p53 that leads to endothelial dysfunction and atherosclerosis. Circ. Res. 112, 911-923. https://doi.org/10.1161/CIRCRESAHA.111.300179
- Iiyama, K., Hajra, L., Iiyama, M., Li, H., DiChiara, M., Medoff, B.D., and Cybulsky, M.I. (1999). Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ. Res. 85, 199-207. https://doi.org/10.1161/01.RES.85.2.199
- Jalali, S., del Pozo, M.A., Chen, K., Miao, H., Li, Y., Schwartz, M.A., Shyy, J.Y., and Chien, S. (2001). Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc. Natl. Acad. Sci. USA 98, 1042-1046. https://doi.org/10.1073/pnas.98.3.1042
- Jiang, M., Chiu, S.Y., and Hsu, W. (2011). SUMO-specific protease 2 in Mdm2-mediated regulation of p53. Cell Death Differ. 18, 1005-1015. https://doi.org/10.1038/cdd.2010.168
- Johnson, B.D., Mather, K.J., and Wallace, J.P. (2011). Mechanotransduction of shear in the endothelium: basic studies and clinical implications. Vasc. Med. 16, 365-377. https://doi.org/10.1177/1358863X11422109
- Jongstra-Bilen, J., Haidari, M., Zhu, S.N., Chen, M., Guha, D., and Cybulsky, M.I. (2006). Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. J. Exp. Med. 203, 2073-2083. https://doi.org/10.1084/jem.20060245
- Kano, Y., Katoh, K., and Fujiwara, K. (2000). Lateral zone of cell-cell adhesion as the major fluid shear stress-related signal transduction site. Circ. Res. 86, 425-433. https://doi.org/10.1161/01.RES.86.4.425
- Koskinas, K.C., Chatzizisis, Y.S., Antoniadis, A.P., and Giannoglou, G.D. (2012). Role of endothelial shear stress in stent restenosis and thrombosis: pathophysiologic mechanisms and implications for clinical translation. J. Am. Coll. Cardiol. 59, 1337-1349. https://doi.org/10.1016/j.jacc.2011.10.903
- Le, N.T., Heo, K.S., Takei, Y., Lee, H., Woo, C.H., Chang, E., McClain, C., Hurley, C., Wang, X., Li, F., et al. (2013). A crucial role for p90RSK-mediated reduction of ERK5 transcriptional activity in endothelial dysfunction and atherosclerosis. Circulation 127, 486-499. https://doi.org/10.1161/CIRCULATIONAHA.112.116988
- Liu, Y., Chen, B.P., Lu, M., Zhu, Y., Stemerman, M.B., Chien, S., and Shyy, J.Y. (2002). Shear stress activation of SREBP1 in endothelial cells is mediated by integrins. Arterioscler. Thromb. Vasc. Biol. 22, 76-81. https://doi.org/10.1161/hq0102.101822
- Michiels, C. (2003). Endothelial cell functions. J. Cell. Physiol. 196, 430-443. https://doi.org/10.1002/jcp.10333
- Nam, D., Ni, C.W., Rezvan, A., Suo, J., Budzyn, K., Llanos, A., Harrison, D., Giddens, D., and Jo, H. (2009). Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am. J. Physiol. Heart Circ. Physiol. 297, H1535-1543. https://doi.org/10.1152/ajpheart.00510.2009
- Nauli, S.M., Jin, X., AbouAlaiwi, W.A., El-Jouni, W., Su, X., and Zhou, J. (2013). Non-motile primary cilia as fluid shear stress mechanosensors. Methods Enzymol. 525, 1-20. https://doi.org/10.1016/B978-0-12-397944-5.00001-8
- Osawa, M., Masuda, M., Harada, N., Bruno Lopes, R., and Fujiwara, K. (1997). Tyrosine phosphorylation of platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31) in mechanically stimulated vascular endothelial cells. Eur. J. Cell Biol. 72, 229-237.
- Osborn, E.A., Rabodzey, A., Dewey, C.F., Jr., and Hartwig, J.H. (2006). Endothelial actin cytoskeleton remodeling during mechanostimulation with fluid shear stress. Am. J. Physiol. Cell Physiol. 290, C444-452. https://doi.org/10.1152/ajpcell.00218.2005
- Pi, X., Yan, C., and Berk, B.C. (2004). Big mitogen-activated protein kinase (BMK1)/ERK5 protects endothelial cells from apoptosis. Circ. Res. 94, 362-369. https://doi.org/10.1161/01.RES.0000112406.27800.6F
- Reinhart-King, C.A., Fujiwara, K., and Berk, B.C. (2008). Physiologic stress-mediated signaling in the endothelium. Methods Enzymol. 443, 25-44. https://doi.org/10.1016/S0076-6879(08)02002-8
- Shyy, J.Y., and Chien, S. (2002). Role of integrins in endothelial mechanosensing of shear stress. Circ. Res. 91, 769-775. https://doi.org/10.1161/01.RES.0000038487.19924.18
- Stern, D.M., Esposito, C., Gerlach, H., Gerlach, M., Ryan, J., Handley, D., and Nawroth, P. (1991). Endothelium and regulation of coagulation. Diabetes Care 14, 160-166. https://doi.org/10.2337/diacare.14.2.160
- Traub, O., and Berk, B.C. (1998). Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscler. Thromb. Vasc. Biol. 18, 677-685. https://doi.org/10.1161/01.ATV.18.5.677
- Tzima, E., del Pozo, M.A., Shattil, S.J., Chien, S., and Schwartz, M.A. (2001). Activation of integrins in endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. EMBO J. 20, 4639-4647. https://doi.org/10.1093/emboj/20.17.4639
- Tzima, E., Irani-Tehrani, M., Kiosses, W.B., Dejana, E., Schultz, D.A., Engelhardt, B., Cao, G., DeLisser, H., and Schwartz, M.A. (2005). A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437, 426-431. https://doi.org/10.1038/nature03952
- Witty, J., Aguilar-Martinez, E., and Sharrocks, A.D. (2010). SENP1 participates in the dynamic regulation of Elk-1 SUMOylation. Biochem. J. 428, 247-254. https://doi.org/10.1042/BJ20091948
- Won, D., Zhu, S.N., Chen, M., Teichert, A.M., Fish, J.E., Matouk, C.C., Bonert, M., Ojha, M., Marsden, P.A., and Cybulsky, M.I. (2007). Relative reduction of endothelial nitric-oxide synthase expression and transcription in atherosclerosis-prone regions of the mouse aorta and in an in vitro model of disturbed flow. Am. J. Pathol. 171, 1691-1704. https://doi.org/10.2353/ajpath.2007.060860
- Woo, C.H., Massett, M.P., Shishido, T., Itoh, S., Ding, B., McClain, C., Che, W., Vulapalli, S.R., Yan, C., and Abe, J. (2006). ERK5 activation inhibits inflammatory responses via peroxisome proliferator-activated receptor delta (PPARdelta) stimulation. J. Biol. Chem. 281, 32164-32174. https://doi.org/10.1074/jbc.M602369200
- Woo, C.H., Shishido, T., McClain, C., Lim, J.H., Li, J.D., Yang, J., Yan, C., and Abe, J. (2008a). Extracellular signal-regulated kinase 5 SUMOylation antagonizes shear stress-induced anti-inflammatory response and endothelial nitric oxide synthase expression in endothelial cells. Circ. Res. 102, 538-545. https://doi.org/10.1161/CIRCRESAHA.107.156877
- Woo, C.H., Shishido, T., McClain, C., Lim, J.H., Li, J.D., Yang, J., Yan, C., and Abe, J. (2008b). Extracellular signal-regulated kinase 5 SUMOylation antagonizes shear stress-induced anti-inflammatory response and endothelial nitric oxide synthase expression in endothelial cells. Circ. Res. 102, 538-545. https://doi.org/10.1161/CIRCRESAHA.107.156877
- Yeh, E.T. (2009). SUMOylation and De-SUMOylation: wrestling with life's processes. J. Biol. Chem. 284, 8223-8227. https://doi.org/10.1074/jbc.R800050200
- Young, A., Wu, W., Sun, W., Benjamin Larman, H., Wang, N., Li, Y.S., Shyy, J.Y., Chien, S., and Garcia-Cardena, G. (2009). Flow activation of AMP-activated protein kinase in vascular endothelium leads to Kruppel-like factor 2 expression. Arterioscler. Thromb. Vasc. Biol. 29, 1902-1908. https://doi.org/10.1161/ATVBAHA.109.193540
- Yu, J., Bergaya, S., Murata, T., Alp, I.F., Bauer, M.P., Lin, M.I., Drab, M., Kurzchalia, T.V., Stan, R.V., and Sessa, W.C. (2006). Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J. Clin. Invest. 116, 1284-1291. https://doi.org/10.1172/JCI27100
Cited by
- Microfluidic Device for Studying Controllable Hydrodynamic Flow Induced Cellular Responses vol.89, pp.6, 2017, https://doi.org/10.1021/acs.analchem.7b00013
- Rubiarbonone C inhibits platelet-derived growth factor-induced proliferation and migration of vascular smooth muscle cells through the focal adhesion kinase, MAPK and STAT3 Tyr705 signalling pathways 2017, https://doi.org/10.1111/bph.13986
- Successes and future outlook for microfluidics-based cardiovascular drug discovery vol.10, pp.3, 2015, https://doi.org/10.1517/17460441.2015.1001736
- Is Vasomotion in Cerebral Arteries Impaired in Alzheimer’s Disease? vol.46, pp.1, 2015, https://doi.org/10.3233/JAD-142976
- Upregulation of Dickkopf1 by oscillatory shear stress accelerates atherogenesis vol.94, pp.4, 2016, https://doi.org/10.1007/s00109-015-1369-9
- Notch1 inhibition reduces low shear stress-induced plaque formation vol.72, 2016, https://doi.org/10.1016/j.biocel.2016.01.007
- Laminar shear flow increases hydrogen sulfide and activates a nitric oxide producing signaling cascade in endothelial cells vol.464, pp.4, 2015, https://doi.org/10.1016/j.bbrc.2015.07.115
- Platelets modulate endothelial cell response to dynamic shear stress through PECAM-1 vol.150, 2017, https://doi.org/10.1016/j.thromres.2016.12.003
- Effects of shear stress on endothelial cells: go with the flow vol.219, pp.2, 2017, https://doi.org/10.1111/apha.12725
- Vascular endothelium – Gatekeeper of vessel health vol.248, 2016, https://doi.org/10.1016/j.atherosclerosis.2016.03.007
- Effect of therapeutic ultrasound on brain angiogenesis following intracerebral hemorrhage in rats vol.102, 2015, https://doi.org/10.1016/j.mvr.2015.08.001
- Ursodeoxycholic Acid (UDCA) Exerts Anti-Atherogenic Effects by Inhibiting Endoplasmic Reticulum (ER) Stress Induced by Disturbed Flow vol.38, pp.10, 2015, https://doi.org/10.14348/molcells.2015.0094
- Mechanical Stress as the Common Denominator between Chronic Inflammation, Cancer, and Alzheimer’s Disease vol.5, 2015, https://doi.org/10.3389/fonc.2015.00197
- Time Rate of Blood Pressure Variation Is Associated With Endothelial Function in Patients With Metabolic Syndrome vol.57, pp.2, 2016, https://doi.org/10.1536/ihj.15-322
- Flow pattern-dependent endothelial cell responses through transcriptional regulation 2017, https://doi.org/10.1080/15384101.2017.1364324
- The Role of PB1 Domain Proteins in Endothelial Cell Dysfunction and Disease vol.22, pp.14, 2015, https://doi.org/10.1089/ars.2014.6182
- Insights on atherosclerosis by non-invasive assessment of wall stress and arterial morphology along the length of human coronary plaques vol.31, pp.8, 2015, https://doi.org/10.1007/s10554-015-0736-5
- Effects of Shenlian extract on experimental atherosclerosis in ApoE-deficient mice based on ultrasound biomicroscopy vol.16, pp.1, 2016, https://doi.org/10.1186/s12906-016-1449-6
- The role of Hippo/yes-associated protein signalling in vascular remodelling associated with cardiovascular disease 2017, https://doi.org/10.1111/bph.13806
- Differences in aortic vortex flow pattern between normal and patients with stroke: qualitative and quantitative assessment using transesophageal contrast echocardiography vol.32, pp.S1, 2016, https://doi.org/10.1007/s10554-015-0818-4
- The Viability of Single Cancer Cells after Exposure to Hydrodynamic Shear Stresses in a Spiral Microchannel: A Canine Cutaneous Mast Cell Tumor Model vol.9, pp.1, 2018, https://doi.org/10.3390/mi9010009
- Fluid shear stress regulates vascular remodeling via VEGFR-3 activation, although independently of its ligand, VEGF-C, in the uterus during pregnancy vol.40, pp.4, 2017, https://doi.org/10.3892/ijmm.2017.3108
- Shear stress induces human aortic endothelial cell apoptosis via interleukin-1 receptor-associated kinase 2-induced endoplasmic reticulum stress vol.16, pp.5, 2017, https://doi.org/10.3892/mmr.2017.7524
- Retrospective Study of Hemodynamic Changes Before and After Carotid Stenosis Formation by Vessel Surface Repairing vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-23842-0
- Nanofluid flow in a catheterized tapered artery pp.1588-2926, 2018, https://doi.org/10.1007/s10973-018-7930-3
- PCSK9: A novel inflammation modulator in atherosclerosis? vol.234, pp.3, 2019, https://doi.org/10.1002/jcp.27254
- PAR-1 is a novel mechano-sensor transducing laminar flow-mediated endothelial signaling vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-33222-3
- The roles of mechanotransduction, vascular wall cells, and blood cells in atheroma induction pp.1708-539X, 2019, https://doi.org/10.1177/1708538118796063
- Deciphering Non-coding RNAs in Cardiovascular Health and Disease vol.5, pp.None, 2014, https://doi.org/10.3389/fcvm.2018.00073
- Coronary Smooth Muscle Cell Calcium Dynamics: Effects of Bifurcation Angle on Atheroprone Conditions vol.9, pp.None, 2014, https://doi.org/10.3389/fphys.2018.01528
- Endothelial permeability, LDL deposition, and cardiovascular risk factors-a review vol.114, pp.1, 2014, https://doi.org/10.1093/cvr/cvx226
- Does statin therapy impact the proximal aortopathy in aortic valve disease? vol.111, pp.9, 2014, https://doi.org/10.1093/qjmed/hcy129
- Joint effect of a combination of components from the fruit ofCrataegus pinnatifidaBge. Var.majorN.E. Br. and the root ofSalvia miltiorrhizaBge. with swimming on atherosclerosis in rats vol.8, pp.65, 2014, https://doi.org/10.1039/c8ra05548c
- The emergence of solid stress as a potent biomechanical marker of tumour progression vol.2, pp.5, 2014, https://doi.org/10.1042/etls20180049
- Hypoxia as a Factor Involved in the Regulation of the apoA-1, ABCA1, and Complement C3 Gene Expression in Human Macrophages vol.84, pp.5, 2014, https://doi.org/10.1134/s0006297919050079
- The effects of venous hemodynamics on angiogenesis in morbid obese vol.71, pp.3, 2014, https://doi.org/10.3233/ch-180414
- Analysis of Flow and Wall Deformation in a Stenotic Flexible Channel Containing a Soft Core, Simulating Atherosclerotic Arteries vol.20, pp.6, 2014, https://doi.org/10.1007/s12541-019-00122-z
- Pumpless microfluidic devices for generating healthy and diseased endothelia vol.19, pp.19, 2014, https://doi.org/10.1039/c9lc00446g
- Pumpless microfluidic devices for generating healthy and diseased endothelia vol.19, pp.19, 2014, https://doi.org/10.1039/c9lc00446g
- Therapeutic targets for endothelial dysfunction in vascular diseases vol.42, pp.10, 2019, https://doi.org/10.1007/s12272-019-01180-7
- Features of local hemodynamics and the formation of atherosclerotic lesions in coronary artery bifurcation vol.25, pp.5, 2014, https://doi.org/10.15829/1560-4071-2020-3900
- Laminar flow inhibits the Hippo/YAP pathway via autophagy and SIRT1-mediated deacetylation against atherosclerosis vol.11, pp.2, 2014, https://doi.org/10.1038/s41419-020-2343-1
- Wortmannin targeting phosphatidylinositol 3‐kinase suppresses angiogenic factors in shear‐stressed endothelial cells vol.235, pp.6, 2014, https://doi.org/10.1002/jcp.29412
- Therapeutic targets and drugs for hyper-proliferation of vascular smooth muscle cells vol.50, pp.4, 2020, https://doi.org/10.1007/s40005-019-00469-5
- Endothelial monolayer disruption in bioprosthetic heart valve as a trigger of primary tissue failure vol.19, pp.2, 2014, https://doi.org/10.20538/1682-0363-2020-2-55-62
- Harnessing Mechanosensation in Next Generation Cardiovascular Tissue Engineering vol.10, pp.10, 2014, https://doi.org/10.3390/biom10101419
- Shear Stress in Schlemm’s Canal as a Sensor of Intraocular Pressure vol.10, pp.None, 2014, https://doi.org/10.1038/s41598-020-62730-4
- Endothelial Function in Patients With Continuous-Flow Left Ventricular Assist Devices vol.72, pp.1, 2021, https://doi.org/10.1177/0003319720946977
- Dendrobium catenatum Lindl. Water Extracts Attenuate Atherosclerosis vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/9951946
- Reconstructing haemodynamics quantities of interest from Doppler ultrasound imaging vol.37, pp.2, 2014, https://doi.org/10.1002/cnm.3416
- Functional lipidomics of vascular endothelial cells in response to laminar shear stress vol.35, pp.2, 2021, https://doi.org/10.1096/fj.202002144r
- Endothelial Rap1 (Ras-Association Proximate 1) Restricts Inflammatory Signaling to Protect From the Progression of Atherosclerosis vol.41, pp.2, 2021, https://doi.org/10.1161/atvbaha.120.315401
- Dilation‐Responsive Microshape Programing Prevents Vascular Graft Stenosis vol.17, pp.18, 2014, https://doi.org/10.1002/smll.202007297
- Recent Developments in Nanomaterial‐Based Shear‐Sensitive Drug Delivery Systems vol.10, pp.13, 2014, https://doi.org/10.1002/adhm.202002196
- LXN deficiency regulates cytoskeleton remodelling by promoting proteolytic cleavage of Filamin A in vascular endothelial cells vol.25, pp.14, 2014, https://doi.org/10.1111/jcmm.16685
- Rosuvastatin Inhibits the Apoptosis of Platelet-Derived Growth Factor-Stimulated Vascular Smooth Muscle Cells by Inhibiting p38 via Autophagy vol.378, pp.1, 2014, https://doi.org/10.1124/jpet.121.000539
- The quiescent endothelium: signalling pathways regulating organ-specific endothelial normalcy vol.18, pp.8, 2014, https://doi.org/10.1038/s41569-021-00517-4
- Novel Biomarkers of Endothelial Dysfunction in Cardiovascular Diseases vol.17, pp.4, 2014, https://doi.org/10.20996/1819-6446-2021-08-08
- miR‐25‐5p regulates endothelial progenitor cell differentiation in response to shear stress through targeting ABCA1 vol.45, pp.9, 2014, https://doi.org/10.1002/cbin.11621
- Establishment of an in vitro thrombogenicity test system with cyclic olefin copolymer substrate for endothelial layer formation vol.11, pp.5, 2021, https://doi.org/10.1557/s43579-021-00072-6
- Relationship Between Coronary Atheroma, Epicardial Adipose Tissue Inflammation, and Adipocyte Differentiation Across the Human Myocardial Bridge vol.10, pp.22, 2014, https://doi.org/10.1161/jaha.121.021003
- Predicting the onset of consequent stenotic regions in carotid arteries using computational fluid dynamics vol.33, pp.12, 2021, https://doi.org/10.1063/5.0068998
- Cell membrane rupture: a novel test reveals significant variations among different brands of tissue culture flasks vol.14, pp.None, 2014, https://doi.org/10.1186/s13104-021-05453-7