• Title/Summary/Keyword: Infiltration performance

Search Result 173, Processing Time 0.026 seconds

Reduction of waterborne microorganisms in treated domestic wastewater for reuse in agriculture: Comparison between floating media filter and sand filter

  • Semsayun, Chalanda;Chiemchaisri, Wilai;Chiemchaisri, Chart;Patchanee, Nopparat
    • Environmental Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.403-409
    • /
    • 2015
  • This study aims to investigate the use of a floating media filter (FMF) to eliminate waterborne microorganism in treated domestic wastewater for reuse in agriculture. A conventional sand filter (SF) was used concurrently to compare treated water quality. The total/fecal coliforms and somatic coliphage were employed as fecal indicators. The result showed that the FMF was fed with 3 times higher infiltration rate ($15m^3/m^2.h$) than that in the SF ($5m^3/m^2.h$), in which both filters gave similar coliform removal at 6 hours operation. The somatic coliphage elimination tended to increase with operational time for the FMF while that of the SF showed decreasing trend. When a 24 hour continuous operation was applied for the FMF, it showed better removal of somatic coliphage (78%), fecal coliforms (60%) and total coliforms (56%) than that of 6 hour operation. In conclusion, the FMF gave better performance than the SF did by producing a good quality of treated water for agriculture in terms of waterborne microorganisms including turbidity and suspended solids.

Variation of Dielectric Constant with Various Particle Size and Packing Density on Inkjet Printed Hybrid $BaTiO_3$ Films

  • Lim, Jong-Woo;Kim, Ji-Hoon;Yoon, Young-Joon;Yoon, Ho-Gyu;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.271-271
    • /
    • 2010
  • $BaTiO_3$(BT) has high permittivity so that has been applied to dielectric and insulator materials in 3D system-level package integration. In order to achieve excellent performance of device, the BT layer should be highly dense. In this study, BT thick films were prepared by the inkjet printing method. And these films were cured at $280^{\circ}C$ after infiltration of polymer resin. As a result, we have successfully fabricated not only the inkjet-printed hybrid BT film but also metal-insulator-metal(MIM) capacitor without sintering process. Changes in the dielectric constant of BT hybrid film with particle size and packing density were investigated. The dielectric constant was increased with increasing packing density and particle size. Further, the BT hybrid film using two different size particles had even higher packing density and dielectric constant.

  • PDF

A study on application of an E/V shaft cooling system to reduce the stack effect in high-rise building (연돌효과 저감을 위한 E/V샤프트 냉각장치의 적용에 대한 연구)

  • Lim, Hyun-Woo;Lee, June-Ho;Seo, Jung-Min;Lee, Jung-Hun;Song, Doo-Sam
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.284-292
    • /
    • 2009
  • The stack-effect in high-rise buildings in winter causes many problems such as difficulties in opening or closing doors, infiltration, energy loss, noise and fire protection. Stack effect is influenced by temperature difference between the interior and exterior of building and the height of building. As an attenuation method for stack effect, the architectural methods are generally used. However, as though architectural methods were fully adopted, the problems are reported as ever in tall building. In this study, a new method to reduce stack effect will be suggested. As an active control method against the stack effect, E/V shaft natural cooling method is suggested. In this paper, the concept of E/V shaft natural cooling system and its reduction performance of stack effect by simulation and field measurement will be reported.

  • PDF

Compressive Shear and Bending Performance of Compressed Laminated Wood after Microwave Heating

  • Park, Cheul-Woo;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.539-547
    • /
    • 2012
  • To manufacture laminated wood with improved mechanical properties by providing uniform adhesiveness, the adhesive was applied and the plate adhesive was laminated on the wood surface. Then, after laminating the wood on the top part of the adhesivebond, it was heated and dried while the adhesive was stiffened using microwaves, and the test piece was manufactured by compressing it with the press machine for thirty minutes. The temperature and the water content were examined according to the heating time of the wood heated with the microwave, and testing was conducted on the shear strength and flexural strength of the wood. In addition, the microstructure of the adhesive bond between the wood was recorded to confirm the penetrabilityinto the wood structure for the adhesive. After the test was conducted, it was found that the test piece manufactured with wood that has its water content leveled with the microwave heating showed improved shear strength and bending strength compared to the standard test piece. With regard to adhesives, liquefied polyvinyl acetate resin and plate's PVB resin were found to have superior adhesive strength. Also, after filming the cellular microstructure, it was found that when the laminated wood is heated with microwaves, the infiltration of the adhesive into the inside of the wood becomes easy, which makes it effective for improving adhesiveness.

A Study for Development of Durability of the Subway Concrete Structure exposed to Choride Environment (염해 환경에 있는 지하철 콘크리트 구조물의 내구성 향상 대책수립에 관한 연구)

  • Lee Moo-Kwan;Kim Eun Kyum;Kim Dae Ho
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1184-1189
    • /
    • 2005
  • Durability of concrete has been currently issued in the engineering societies and a large number of studies on the concrete corrosion in salty environment have been performed. The reinforcement corrosion, which is the primary reason of deterioration of the concrete structure exposed to chloride environment. is caused by the chloride ions infiltration owing to underground water seeping into the concrete. In this study. the endurance periods using the diffusion equation of the concrete specification have been evaluated on the concrete structures with different addictives for the brand new R/C subway structure exposed to seashore underground water. Furthermore. the guidance for proper use of the addictives and the reasonable thickness of concrete cover are derived for concrete mixing. From the result of the evaluation corresponding to salt damage for Inchon subway line I, the endurance periods of the ordinary Portlandcement concretes are represented as $42\~75$ years and fail to achieve the objective period of 100 years. However, the lower water-cement ratio expands the endurance periods and the blast furnace slag concrete with small quantity of the silica fume, which shows the best performance of corrosion resistance in this study, represents more than 170 years of the endurance period. Moreover, the case of use of blast furnace slag and fly ash together shows the endurance period of $134\~171$ years and it means that the result very satisfies the objective endurance period.

  • PDF

The Leakage Reduction of Natural Inorganic Powder Compound Applying Subsurface Structural Weak Part (지하구조물 취약부에 적용한 천연 무기질계 분말형 혼화제의 누수저감효과)

  • Yoon, Sung-Hwan;Seo, Hyun-Jae;Lee, Hye-Ryung;Park, Jin-Sang;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.19-22
    • /
    • 2011
  • For underground structures that are exposed to environmental conditions, the declination of the durability of concrete occurs easily because of leakages from high hydraulic pressure and the frequent contact of water due to environmental factors. Therefore this study is to confirm that the leakage reduction of natural inorgnic powder compound applying subsurface structural weak part and make the performance improvement of concrete as an objective. The test was done by making the rebar, flat tie, nail and film infiltration and each of its water tank and cylindrical test body then after pouring water to each of the test body, the test observe the change of the water tank surface absorbed condition and leakage of each specimen with respect to time. As a conclusion, the test was observed that this water proofing admixture has better watertightness from the beginning of the setting time(when it hardens), the ettringite and the thaumasite generates a large quantity of hydration products that controls the formation in a large opening and the CSH produced by pozzolan reaction makes a dent at this opening.

  • PDF

Fabrication and Characterization of Reaction Sintered SiC Based Materials (반응소결 SiC 재료의 제조 및 특성)

  • Jin, Joon-Ok;Lee, Sang-Pill;Park, Yi-Hyun;Hwang, Huei-Jin;Yoon, Han-Ki;Kohyama, Akira
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.294-299
    • /
    • 2003
  • The efficiency of complex slurry preparation route for the development of high performance RS-SiCf/SiC composites has been investigated. The green bodies for RS-SiC and RS-SiCf/SiC composite materials prior to the infiltration of molten silicon were prepared with various C/SiC complex matrix slurries, which associated with both different sizes of starting SiC particles and blending ratios of starting SiC and carbon particles. The reinforcing materials in the composite system were uncoated and C coated Tyranno SA SiC fiber. The characterization of RS-SiC and RS-SiCf/SiC composite materials was examined by means of SEM, EDS and three point bending test. Based on the mechanical property-microstructure correlation, process optimization methodology is discussed.

  • PDF

A Study for Characteristics of Water that Penetrates Wood Flour due to Changes of Concentration of BDG (BDG 농도변화에 따른 용수의 목분 침투특성 연구)

  • Kong, Il-Chean;Park, Il-Gyu;Lim, Kyung-Bum;Rie, Dong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.74-79
    • /
    • 2013
  • As the feature of fire, it is hard for deep-seated fire to spread to the deeper site, and it also has danger for being re-ignited cause of recontacting with oxygen after being put off. Now it is ruled in the certification criteria of wetting agent used for extinguishing deep-seated fire that the criteria for surface tension is below 33[mN/m] in Korea. For figuring out how much water for fire-fighiting can permeate into combustibles, in this research, the permeating performance is analyzed by measuring the speed of permeating and transmission quantity released after that, by pouring solution whose surface tension is changed by adjusting concentration of surfactant BDG(Butyl Di Glycol) in column From this result, it is can be determined that transmission quantity becomes less and wet area goes wider as surface tension is lower, and it is also able to be analyzed as quantity of absorbed liquid and wet area is increased because fluid permeates into the core.

Thermal and mechanical properties of C/SiC composites fabricated by liquid silicon infiltration with nitric acid surface-treated carbon fibers

  • Choi, Jae Hyung;Kim, Seyoung;Kim, Soo-hyun;Han, In-sub;Seong, Young-hoon;Bang, Hyung Joon
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.48-53
    • /
    • 2019
  • Carbon fiber reinforced SiC composites (C/SiC) have high-temperature stability and excellent thermal shock resistance, and are currently being applied in extreme environments, for example, as aerospace propulsion parts or in high-performance brake systems. However, their low thermal conductivity, compared to metallic materials, are an obstacle to energy efficiency improvements via utilization of regenerative cooling systems. In order to solve this problem, the present study investigated the bonding strength between carbon fiber and matrix material within ceramic matrix composite (CMC) materials, demonstrating the relation between the microstructure and bonding, and showing that the mechanical properties and thermal conductivity may be improved by treatment of the carbon fibers. When fiber surface was treated with a nitric acid solution, the observed segment crack areas within the subsequently generated CMC increased from 6 to 10%; moreover, it was possible to enhance the thermal conductivity from 10.5 to 14 W/m·K, via the same approach. However, fiber surface treatment tends to cause mechanical damage of the final composite material by fiber etching.

Densification of matrix graphite for spherical fuel elements used in molten salt reactor via addition of green pitch coke

  • He, Zhao;Zhao, Hongchao;Song, Jinliang;Guo, Xiaohui;Liu, Zhanjun;Zhong, Yajuan;Marrow, T. James
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1161-1166
    • /
    • 2022
  • Green pitch coke with an average particle size of 2 mm was adopted as densifier and added to the raw materials of conventional A3-3 matrix graphite (MG) to prepare modified A3-3 matrix graphite (MMG) by the quasi-isostatic molding method. The structure, mechanical and thermal properties were assessed. Compared with MG, MMG had a more compact structure, and exhibited improved properties of higher mechanical strength, higher thermal conductivity and better molten salt barrier performance. Notably, under the same infiltration pressure of 5 atm, the fluoride salt occupation of MMG was only 0.26 wt%, whereas it was 15.82 wt% for MG. The densification effect of green pitch coke endowed MMG with improved properties for potential use in the spherical fuel elements of molten salt reactor.