Thermal and mechanical properties of C/SiC composites fabricated by liquid silicon infiltration with nitric acid surface-treated carbon fibers

  • Choi, Jae Hyung (Energy Material Laboratory, Korea Institute of Energy Research) ;
  • Kim, Seyoung (Energy Material Laboratory, Korea Institute of Energy Research) ;
  • Kim, Soo-hyun (Energy Material Laboratory, Korea Institute of Energy Research) ;
  • Han, In-sub (Energy Material Laboratory, Korea Institute of Energy Research) ;
  • Seong, Young-hoon (Energy Material Laboratory, Korea Institute of Energy Research) ;
  • Bang, Hyung Joon (Energy Material Laboratory, Korea Institute of Energy Research)
  • 발행 : 2019.02.01

초록

Carbon fiber reinforced SiC composites (C/SiC) have high-temperature stability and excellent thermal shock resistance, and are currently being applied in extreme environments, for example, as aerospace propulsion parts or in high-performance brake systems. However, their low thermal conductivity, compared to metallic materials, are an obstacle to energy efficiency improvements via utilization of regenerative cooling systems. In order to solve this problem, the present study investigated the bonding strength between carbon fiber and matrix material within ceramic matrix composite (CMC) materials, demonstrating the relation between the microstructure and bonding, and showing that the mechanical properties and thermal conductivity may be improved by treatment of the carbon fibers. When fiber surface was treated with a nitric acid solution, the observed segment crack areas within the subsequently generated CMC increased from 6 to 10%; moreover, it was possible to enhance the thermal conductivity from 10.5 to 14 W/m·K, via the same approach. However, fiber surface treatment tends to cause mechanical damage of the final composite material by fiber etching.

키워드

참고문헌

  1. A. G. Evans, F. W. Zok, J. Mat. Sci. 29 (1994) 3857-3896. https://doi.org/10.1007/BF00355946
  2. M. D. Thouless, A. G. Evans, Acta Met. 36 (1988) 517-522. https://doi.org/10.1016/0001-6160(88)90083-1
  3. S. Dong, Z. Wang, H. Zhou, Y.-M. Kan, X. Zhang, Y. Ding, L. Gao, B. Wu, J. Hu, J. Kor. Cer. Soc. 49 (2012) 295-300. https://doi.org/10.4191/kcers.2012.49.4.295
  4. Y. Zhang, L. Zhang, L. Cheng, H. Mei, Q. Ke, Y. Xu, J. Cer. Pro. Res. 10 (2009) 248-256.
  5. W. Krenkel, F. Berndt, Mat. Sci. Eng. A 412 (2005) 177-181. https://doi.org/10.1016/j.msea.2005.08.204
  6. A. A. Askalany S. K. Henninger, M. Ghazy, B. B. Saha, App. Ther. Eng. 110 (2017) 695-702. https://doi.org/10.1016/j.applthermaleng.2016.08.075
  7. W. Lin, J. Yuan, B. Sunden, in proceedings of the World Renewable Energy Congress May 2011 Linkoping, Sweden
  8. S. Zhao, Z. Yang, X. Zhou, K. Sun, Cer. Int. 42 (2016) 9264-9269. https://doi.org/10.1016/j.ceramint.2016.03.034
  9. W. Feng, L. Zhang, Y. Liu, X. Li, L. Cheng, H. Bai, Mat. Sci. Eng. A 662 (2016) 506-510. https://doi.org/10.1016/j.msea.2016.03.040
  10. W. Feng, L. Zhang, Y. Liu, X. Li, L. Cheng, B. Chen, Mat. Sci. Eng. A 626 (2015) 500-504. https://doi.org/10.1016/j.msea.2014.12.105
  11. K. Yoshida, S. Kajikawa, T. Yano, J. Nuc. Mat. 440 (2013) 539-545. https://doi.org/10.1016/j.jnucmat.2013.03.008
  12. W. Feng, L. Zhang, Y. Liu, X. Li, B. Chen, L. Cheng, H. Zhao, Fus. Eng. Des. 90 (2015) 110-118. https://doi.org/10.1016/j.fusengdes.2014.12.005
  13. N. P. Bansal, J. Lamon, in "Ceramic Matrix Composites: Materials, Modeling and Technology" (Wiley-American Ceramic Society, 2014) p.187-189.
  14. P. Morgan, in "Carbon Fibers and Their Composites" (CRC Press, 2005) p. 347-363
  15. S. Tivari, J. Bijwe, S. Panier, Wear 271 (2011) 2252-2260. https://doi.org/10.1016/j.wear.2010.11.052
  16. Z. Wu, C. U. Pittman. Jr, S. D. Gardner, Carbon 33 (1995) 597-605. https://doi.org/10.1016/0008-6223(95)00145-4
  17. J. Jang, H. Yang, J. Mat. Sci. 35 (2000) 2297-2303. https://doi.org/10.1023/A:1004791313979
  18. M. Sharma, S. Gao, E. Mader, H. Sharma, L. Y. Wei, J. Bijwe, Com. Sci. Tec. 102 (2014) 35-50. https://doi.org/10.1016/j.compscitech.2014.07.005
  19. S. Y. Mun, H. M. Lim, D.-J. Lee, Ther. Acta 619 (2015) 16-19. https://doi.org/10.1016/j.tca.2015.09.020
  20. W. Krenkel, B. Heidenreich, R. Renz, Adv. Eng. Mat. 4 (2002) 427-436. https://doi.org/10.1002/1527-2648(20020717)4:7<427::AID-ADEM427>3.0.CO;2-C
  21. S. Tiwari, J. Bijwe, Proc. Tec. 14 (2014) 505-512. https://doi.org/10.1016/j.protcy.2014.08.064
  22. N. Li, G. Liu, Z. Wang, J. Liang, X. Zhang, Fib. Pol. 15 (2014) 2395-2403. https://doi.org/10.1007/s12221-014-2395-x