• Title/Summary/Keyword: Inductively coupled sensor

Search Result 16, Processing Time 0.021 seconds

Implementation of an Inductively Coupled EM Probe System for PD Diagnosis

  • Kim, Hee-Dong;Park, Noh-Joon;Park, Dae-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.111-118
    • /
    • 2011
  • In recent years, various types of partial discharge (PD) methods such as capacitive, inductive, electromagnetic, and acoustic coupling techniques have been developed for diagnosing rotating machines. An electromagnetic (EM) probe, which is an inductively coupled type of sensor, is required for detecting corona and internal discharges during off-line tests. In this study, a new technique for enhancing the measurement sensitivities for corona and internal discharge based on an EM inductive position sensor is proposed. An EM probe that winds wires around horseshoe-shaped and cylindershaped ferrites as helices is designed and optimized for the implementation of off-line PD monitoring of the stator winding of a rotating machine. The measurement system based on this design is implemented, and it is verified from the results of the experiment performed in this study that the probe provides similar performance as existing commercial products.

Double-Side Notched Long-Period Fiber Gratings fabricated by Using an Inductively Coupled Plasma for Force Sensing

  • Fang, Yu-Lin;Huang, Tzu-Hsuan;Chiang, Chia-Chin;Wu, Chao-Wei
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1399-1404
    • /
    • 2018
  • This study used an inductively coupled plasma (ICP) dry etching process with a metal amplitude mask to fabricate a double-side notched long-period fiber grating (DNLPFG) for loading sensing. The DNLPFG exhibited increasing resonance attenuation loss for a particular wavelength when subjected to loading. When the DNLPFG was subjected to force loading, the transmission spectra were changed, showing a with wavelength shift and resonance attenuation loss. The experimental results showed that the resonant dip of the DNLPFG increased with increasing loading. The maximum resonant dip of the $40-{\mu}m$ DNLPFG sensor was -26.522 dB under 0.049-N loading, and the largest force sensitivity was -436.664 dB/N. The results demonstrate that the proposed DNLPFG has potential for force sensing applications.

Influence of Inductively Coupled Oxygen Plasma on the Surface of Poly(ether sulfone)

  • Lee, Do Kyung;Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.214-217
    • /
    • 2022
  • The effect of inductively coupled plasma (ICP) treatment with O2 gas on the surface properties of poly(ether sulfone) (PES) was investigated. X-ray photoelectron spectroscopy (XPS) was used to analyze the chemical characteristics of the O2 plasma-treated PES films. The surface roughness of the pristine and O2 plasma-treated PES films for different RF powers of the ICP was determined using an atomic force microscope (AFM). The contact angles of the PES films were also measured, using which the surface free energies were calculated. The O1s XPS spectra of the PES films revealed that the number of polar functional groups increased following the O2 plasma treatment. The AFM analysis showed the average surface roughness increased from 1.01 to 4.48 nm as the RF power of the ICP was increased. The contact angle measurements revealed that the PES films became more hydrophilic as the RF power of the ICP was increased. The total surface energy increased with the RF power of the ICP, resulting from the increased polar energy component.

Fabrication of a silicon pressure sensor for measuring low pressure using ICP-RIE (ICP-RIE를 이용한 저압용 실리콘 압력센서 제작)

  • Lee, Young-Tae;Takao, Hidekuni;Ishida, Makoto
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.126-131
    • /
    • 2007
  • In this paper, we fabricated piezoresistive pressure sensor with dry etching technology which used ICP-RIE (inductively coupled plasma reactive ion etching) and etching delay technology which used SOI (silicon-on-insulator). Structure of the fabricated pressure sensor shows a square diaphragm connected to a frame which was vertically fabricated by dry etching process and a single-element four-terminal gauge arranged at diaphragm edge. Sensitivity of the fabricated sensor was about 3.5 mV/V kPa at 1 kPa full-scale. Measurable resolution of the sensor was not exceeding 20 Pa. The nonlinearity of the fabricated pressure sensor was less than 0.5 %F.S.O. at 1 kPa full-scale.

Inductively coupled nanocomposite wireless strain and pH sensors

  • Loh, Kenneth J.;Lynch, Jerome P.;Kotov, Nicholas A.
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.531-548
    • /
    • 2008
  • Recently, dense sensor instrumentation for structural health monitoring has motivated the need for novel passive wireless sensors that do not require a portable power source, such as batteries. Using a layer-by-layer self-assembly process, nano-structured multifunctional carbon nanotube-based thin film sensors of controlled morphology are fabricated. Through judicious selection of polyelectrolytic constituents, specific sensing transduction mechanisms can be encoded within these homogenous thin films. In this study, the thin films are specifically designed to change electrical properties to strain and pH stimulus. Validation of wireless communications is performed using traditional magnetic coil antennas of various turns for passive RFID (radio frequency identification) applications. Preliminary experimental results shown in this study have identified characteristic frequency and bandwidth changes in tandem with varying strain and pH, respectively. Finally, ongoing research is presented on the use of gold nanocolloids and carbon nanotubes during layer-by-layer assembly to fabricate highly conductive coil antennas for wireless communications.

Pt-AlGaN/GaN HEMT-based hydrogen gas sensors with and without SiNx post-passivation

  • Vuong, Tuan Anh;Kim, Hyungtak
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1033-1037
    • /
    • 2019
  • GaN-based sensors have been widely investigated thanks to its potential in detecting the presence of hydrogen. In this study, we fabricated hydrogen gas sensors with AlGaN/GaN heterojunction and investigated how the sensing performance to be affected by SiN surface passivation. The gas sensor employed a high electron mobility transistors (HEMTs) with 30 nm platinum catalyst as a gate to detect the hydrogen presence. SiN layer was deposited by inductively-coupled chemical vapor deposition as post-passivation. The sensors with SiN passivation exhibited hydrogen sensing characteristics with various gas flow rates and concentrations of hydrogen in inert background gas at $200^{\circ}C$ similar to the ones without passivation. Aside from quick response time for both sensors, there are differences in sensitivity and recovery time because of the existence of the passivation layer. The results also confirmed the dependence of sensing performance on gas flow rate and gas concentration.

Microfabrication of submicron-size hole for potential held emission and near field optical sensor applications (전계방출 및 근접 광센서 응용을 위한 서브 마이크론 aperture의 제작)

  • Lee, J.W.;Park, S.S.;Kim, J.W.;M.Y. Jung;Kim, D.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.99-101
    • /
    • 2000
  • The fabrication of the submicron size hole has been interesting due to the potential application of the near field optical sensor or liquid metal ion source. The 2 micron size dot array was photolithographically patterned. After formation of the V-groove shape by anisotropic KOH etching, dry oxidation at $1000^{\circ}C$ for 600 minutes was followed. In this procedure, the orientation dependent oxide growth was performed to have an etch-mask for dry etching. The reactive ion etching by the inductively coupled plasma (ICP) system was performed in order to etch ~90 nm $SiO_2$ layer at the bottom of the V-groove and to etch the Si at the bottom. The negative ion energy would enhance the anisotropic etching by the $Cl_2$ gas. After etching, the remaining thickness of the oxide on the Si(111) surface was measured to be ~130 nm by scanning electron microscopy. The etched Si aperture can be used for NSOM sensor.

  • PDF

Fabrication and Characteristic of NOx Gas Sensor by Using $SnO_2$ Nanowires ($SnO_2$ 나노와이어를 이용한 NOx 가스센서 제작 및 특성평가)

  • Kang, Gyo-Sung;Kwon, Soon-Il;Park, Jea-Hwan;Yang, Kea-Joon;Lim, Dong-Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.40-41
    • /
    • 2007
  • $SnO_2$ nanowires are used at the nanoscale level for the electrical transduction of the gas interaction with these sensing materials. We report on a study of high sensitivity and fast NOx gas sensor. We focused on improving the response time and refresh time by growth nanowires on the trench structure of Si substrate as air path. To improve refresh time we applied the trench structure with depth of $10\;{\mu}m$ by the inductively coupled plasma reactive ion etching(ICP-RIE). The fabricated device was measured at temperature of $200{\sim}300^{\circ}C$. The sensor exhibit ultra-fast and reversible electrical response (t90% ~4 s for response and ~3 s for recovery).

  • PDF

Analysis of H-ICP Source by Noninvasive Plasma Diagnostics of Etching Process

  • Park, Kun-Joo;Kim, Min-Shik;Lee, Kwang-Min;Chae, Hee-Yeop;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.126-126
    • /
    • 2009
  • Noninvasive plasma diagnostic technique is introduced to analyze and characterize HICP (Helmholtz Inductively Coupled Plasma) source during the plasma etching process. The HICP reactor generates plasma mainly through RF source power at 13.56MHz RF power and RF bias power of 12.56MHz is applied to the cathode to independently control ion density and ion energy. For noninvasive sensors, the RF sensor and the OES (Optical emission spectroscopy) were employed since it is possible to obtain both physical and chemical properties of the reactor with plasma etching. The plasma impedance and optical spectra were observed while altering process parameters such as pressure, gas flow, source and bias power during the poly silicon etching process. In this experiment, we have found that data measured from these noninvasive sensors can be correlated to etch results. In this paper, we discuss the relationship between process parameters and the measurement data from RF sensor and OES such as plasma impedance and optical spectra and using these relationships to analyze and characterize H-ICP source.

  • PDF

The Fabrication of an Applicative Device for Trench Width and Depth Using Inductively Coupled Plasma and the Bulk Silicon Etching Process

  • Woo, Jong-Chang;Choi, Chang-Auck;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.1
    • /
    • pp.49-54
    • /
    • 2014
  • In this study, we carried out an investigation of the etch characteristics of silicon (Si) film, and the selectivity of Si to $SiO_2$ in $SF_6/O_2$ plasma. The etch rate of the Si film was decreased on adding $O_2$ gas, and the selectivity of Si to $SiO_2$ was increased, on adding $O_2$ gas to the $SF_6$ plasma. The optical condition of the Si film with this work was 1,350 nm/min, at a gas mixing ratio of $SF_6/O_2$ (=130:30 sccm). At the same time, the etch rate was measured as functions of the various etching parameters. The X-ray photoelectron spectroscopy analysis showed the efficient destruction of oxide bonds by ion bombardment, as well as the accumulation of high volatile reaction products on the etched surface. Field emission auger electron spectroscopy analysis was used to examine the efficiency of the ion-stimulated desorption of the reaction products.