DOI QR코드

DOI QR Code

The Fabrication of an Applicative Device for Trench Width and Depth Using Inductively Coupled Plasma and the Bulk Silicon Etching Process

  • Woo, Jong-Chang (Nano Convergence Sensor Research Section, Electronics and Telecommunications Research Institute) ;
  • Choi, Chang-Auck (Nano Convergence Sensor Research Section, Electronics and Telecommunications Research Institute) ;
  • Kim, Chang-Il (School of Electrical and Electronics Engineering, Chung-Ang University)
  • Received : 2013.10.08
  • Accepted : 2014.01.14
  • Published : 2014.02.25

Abstract

In this study, we carried out an investigation of the etch characteristics of silicon (Si) film, and the selectivity of Si to $SiO_2$ in $SF_6/O_2$ plasma. The etch rate of the Si film was decreased on adding $O_2$ gas, and the selectivity of Si to $SiO_2$ was increased, on adding $O_2$ gas to the $SF_6$ plasma. The optical condition of the Si film with this work was 1,350 nm/min, at a gas mixing ratio of $SF_6/O_2$ (=130:30 sccm). At the same time, the etch rate was measured as functions of the various etching parameters. The X-ray photoelectron spectroscopy analysis showed the efficient destruction of oxide bonds by ion bombardment, as well as the accumulation of high volatile reaction products on the etched surface. Field emission auger electron spectroscopy analysis was used to examine the efficiency of the ion-stimulated desorption of the reaction products.

Keywords

References

  1. A. A. Ayon, R. A. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, J. Electrochem. Soc., 146, 139 (1999).
  2. S. H. Lee, S. J. Yun, J. W. Lim, ETRI Journal 35 (2013) 1156. https://doi.org/10.4218/etrij.13.0213.0216
  3. R. J. Shul, C. G. Willison, and L. Zhang, SPIE, 3511, 252 (1998).
  4. K. S. Lee, I. H. Kim, C. B. Yeon, J. W. Lim, S. J. Yun, G. E. Jabbour, ETRI Journal 35 (2013) 587. https://doi.org/10.4218/etrij.13.1912.0025
  5. C. S.-B. Lee, S. Han, and N. C. Macdonald, in Proceedings of Solid State Sensor and Actuator Workshop, p. 45, June 1998.
  6. J. G. Won, J. G. Koo, T. P. Rhee, H. S. Oh, J. H. Lee, ETRI Journal 35 (2013) 603. https://doi.org/10.4218/etrij.13.1912.0030
  7. P. A. Clerc, L. Dellman, F. Gretillat, M. A. Gretillat, P. F. Indermuhle, S. Jeanneret. Ph. Luginbuhl, C. Marxer, T. L. Pfeffer, G. A. Racine, S. Roth, U. Staufer, C. Stebler, P. Thiegaud, and N. F. de Rooij, J. Micromech. Microeng., 8, 272 (1998). https://doi.org/10.1088/0960-1317/8/4/003
  8. W. D. Lang, Mater. Sci. Eng. R., 17, 1 (1997).
  9. Y. S. Yang, I. K. You, H. Han, J. B. Koo, S. C. Lim, S. W. Jung, B. S. Na, H. M. Kim, M. S. Kim, S. H. Moon, ETRI Journal 35 (2013) 571. https://doi.org/10.4218/etrij.13.1912.0018
  10. B. D. Yang, J. M. Oh, H. J. Kang, S. H. Park, C. S. Hwang, M. K. Ryu, J. E. Pi, ETRI Journal 35 (2013) 610. https://doi.org/10.4218/etrij.13.1912.0004
  11. C. P. D'Emic, K. K. Chan, J. Blum, J. Vac. Sci. Technol., B 10 (1992) 1105-1110. https://doi.org/10.1116/1.586085
  12. J. W. Bartha, J. Greschner, M. Puech, P. Maquin, Microelectron. Eng. 27 (1995) 453-456. https://doi.org/10.1016/0167-9317(94)00144-J
  13. A. Burtsev, Y. X. Li, H. W. Zeijl, C. I. M. Beenakker, Microelectron. Eng. 40 (1998) 85-97. https://doi.org/10.1016/S0167-9317(98)00149-X
  14. M. Boufnichel, S. Aachboun, F. Grangeon, P. Lefaucheux, P. Ranson, J. Vac. Sci. Technol., B 20 (2002) 1508-1513. https://doi.org/10.1116/1.1495505
  15. S. Gomez, R. J. Belen, M. Kiehlbauch, E. S. Aydil, J. Vac. Sci. Technol., A 22 (2004) 606-615. https://doi.org/10.1116/1.1710493
  16. J. R. Holt, R. C. Hefty, M. R. Tate, S.T. Ceyer, J. Phys. Chem. 85 (2002) 3529-3532.
  17. L. R. Arana, N. de Mas, R. Schmidt, A. J. Franz, M. A. Schmidt, K. F. Jensen, J. Micromech. Microeng. 17 (2007) 384-392. https://doi.org/10.1088/0960-1317/17/2/026
  18. S. D. Park, J. H. Lim, C. K. Oh, H. C. Lee, and G. Y. Yeom, Appl. Phys. Lett. 88 (2006) 094107-094109. https://doi.org/10.1063/1.2180879
  19. L. Sha, B. O. Cho, and J. P. Chang, J. Vac. Sci. Technol. A 20 (2002) 1525-1531. https://doi.org/10.1116/1.1491267
  20. L. Sha and J. P. Chang, J. Vac. Sci. Technol. A 21 (2003) 1915-1922.
  21. L. Sha, R. Puthenkovilakam, Y. S. Lin, and J. P. Chang, J. Vac. Sci. Technol. B 21 (2003) 2420-2427. https://doi.org/10.1116/1.1627333
  22. E. Sungauer,a_ E. Pargon, X. Mellhaoui, R. Ramos, G. Cunge, L. Vallier, O. Joubert, and T. Lill, J. Vac. Sci. Technol. B 25 (2007) 1640-1646. https://doi.org/10.1116/1.2781550
  23. G. H. Kim, K. T. Kim, D. P. Kim, and C. I. Kim, Thin Solid Films 475 (2005) 86-90. https://doi.org/10.1016/j.tsf.2004.08.028
  24. A. M. Efremov, S. M. Koo, D. P. Kim, K. T. Kim, C. I. Kim, J. Vac. Sci. Technol., A 22 (2004) 2101-2106. https://doi.org/10.1116/1.1772370
  25. S. Tabara, Jpn. J. Appl. Phys. 36 (1997) 2508-2513. https://doi.org/10.1143/JJAP.36.2508
  26. L. Ley, M. Cardona, Y. Baer, M. Campagna, W. D. Grobman, Topics in Applied Physics, L. Ley and M. Cardona, Vol. 27, Springer-Verlag, Berlin Heidelberg New-York.
  27. B. A. De Angelis, C. Rizzo, S. Contarini, S. P. Howlett, Appl. Surf. Sci. 51 (1991) 177-183. https://doi.org/10.1016/0169-4332(91)90400-E
  28. C. H. Shan, W. Kowbel, Carbon 28 (1990) 287-299. https://doi.org/10.1016/0008-6223(90)90003-H
  29. T. L. Barr, J. Vac. Sci. Technol. A 9 (1991) 1793-1805. https://doi.org/10.1116/1.577464
  30. Thomas M. Miller, Amy E. Stevens Miller, John F. Paulson, and Xifan Liu, J. Chem. Phys. 100 (1994) 8841. https://doi.org/10.1063/1.466738
  31. D. C. Hays, K. B. Jung, Y. B. Hahn, E. S. Lambers, S. J. Pearton, J. Donahue, D. Johnson, and R. J. Shul, J. Electrochem. Soc. 146 (1999) 3812-3816. https://doi.org/10.1149/1.1392556