• Title/Summary/Keyword: Induce resistance

Search Result 359, Processing Time 0.027 seconds

Development of protein tyrosine phosphatase 1B (PTPIB) Inhibitors from marine sources and other natural products-Future of Antidiabetic Therapy : A Systematic Review

  • KAUR, Kulvinder Kochar;ALLAHBADIA, Gautam;SINGH, Mandeep
    • The Korean Journal of Food & Health Convergence
    • /
    • v.5 no.3
    • /
    • pp.21-33
    • /
    • 2019
  • The incidence of both obesity and Type 2 Diabetes Mellitus( DM) is increasing proportionately so that causes of deaths from these has overtaken from that of malnourishment. Hence it has been recommended to treat the 2 in parallel considering the role of diabesity on health. Important causes of T2DM are insulin resistance (IR) and /or inadequate insulin secretion. Protein tyrosine phosphatase 1B(PTPIB) has a negative impact in insulin signaling pathways and hence plays crucial role inT2DM,since its overexpression might induce IR. Thus PTPIB is considered a therapeutic target for both obesity and T2DM, there has been a search for novel ,promising natural inhibitors. We conducted a pubmed search for articles related to PTPIB inhibitors from natural causes be it marine sources or other natural sources. Out of 988 articles we selected 100 articles for review. Thus various bioactive molecules isolated from marine organisms that can acts as PTPIB Inhibitors and thus possess antidiabetic activity both in vitro/ in vivo studies ,besides products from fruits like Chinese raspberry or curcumin used as routine spices are described with their chemical classes, structure-activity relationships and potency as assessed by IC 50 values are discussed. More work is required to make this a reality.

Crosstalk between FXR and TGR5 controls glucagon-like peptide 1 secretion to maintain glycemic homeostasis

  • Kim, Hyeonhui;Fang, Sungsoon
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.140-146
    • /
    • 2018
  • Though bile acids have been well known as digestive juice, recent studies have demonstrated that bile acids bind to their endogenous receptors, including Farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (GPBAR1; TGR5) and serve as hormone to control various biological processes, including cholesterol/bile acid metabolism, glucose/lipid metabolism, immune responses, and energy metabolism. Deficiency of those bile acid receptors has been reported to induce diverse metabolic syndromes such as obesity, hyperlipidemia, hyperglycemia, and insulin resistance. As consistent, numerous studies have reported alteration of bile acid signaling pathways in type II diabetes patients. Interestingly, bile acids have shown to activate TGR5 in intestinal L cells and enhance secretion of glucagon-like peptide 1 (GLP-1) to potentiate insulin secretion in response to glucose. Moreover, FXR has been shown to crosstalk with TGR5 to control GLP-1 secretion. Altogether, bile acid receptors, FXR and TGR5 are potent therapeutic targets for the treatment of metabolic diseases, including type II diabetes.

In-Plane Stability of Concrete-Filled Steel Tubular Parabolic Truss Arches

  • Liu, Changyong;Hu, Qing;Wang, Yuyin;Zhang, Sumei
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1306-1317
    • /
    • 2018
  • For determining the in-plane buckling resistance of a concrete-filled steel tubular (CFST) arch, the current technical code GB50923-2013 specifies the use of an equivalent beam-column method which ignores the effect of rise-to-span ratio. This may induce a gap between the calculated result and actual stability capacity. In this study, a FE model is used to predict the buckling behavior of CFST truss arches subjected to uniformly distributed loads. The influence of rise-to-span ratio on the capacity of truss arches is investigated, and it is found that the stability capacity reduces as rise-to-span ratio declines. Besides, the calculations of equivalent slenderness ratio for different truss sections are made to consider the effect of shear deformation. Moreover, based on FE results, a new design equation is proposed to predict the in-plane strength of CFST parabolic truss arches under uniformly distributed loads.

The Effects of Liquid Butadiene Rubber and Resins as Processing Aids on the Physical Properties of SSBR/Silica Compounds

  • Iz, Muhammet;Kim, Donghyuk;Hwang, Kiwon;Kim, Woong;Ryu, Gyeongchan;Song, Sanghoon;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.289-299
    • /
    • 2020
  • Highly aromatic (HA) oils are common processing aids used in tire tread compounds. However, they often bleed and evaporate from the vulcanizates during tire use. Thus, the mechanical and dynamical properties of the tire decrease. To overcome this problem, we investigated nonfunctionalized liquid butadiene rubber (LBR-305, Kuraray) and center-functionalized liquid butadiene rubber (C-LqBR), polymerized by anionic polymerization. In addition to the liquid butadiene rubbers, p-tert-octylphenol (P-Resin) and C5 hydrocarbon (H-Resin) tackifier resins, which can induce entanglement of rubber compounds, were researched as a processing aid to solve the bleeding problem. Liquid butadiene rubbers have significantly reduced extraction loss by crosslinking with the main rubber chain. They have also increased the abrasion resistance and showed similar or better mechanical and dynamical properties against HA oils. However, resin compounds did not show differences in extraction loss compared to HA oil compounds; instead, they showed increased wet traction.

The Effect of Wrist and Trunk Weight Loading using Sandbags on Gait in Chronic Stroke Patients (모래주머니를 이용한 팔목과 몸통의 무게 증가가 만성 뇌졸중 환자들의 보행에 미치는 영향)

  • Park, Sangheon;Lim, Hee Sung;Yoon, Sukhoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.1
    • /
    • pp.50-58
    • /
    • 2021
  • Objective: This study aimed to determine the effect of wrist and trunk weight loading using sandbags in stroke patients in order to provide the quantitative data for enhancement of gait movement. Method: Twelve stroke patients, who have been diagnosed with hemiplegia over a year ago, were participated in this study. All subjects were asked to perform normal walking [N], wrist sandbag walking [W], wrist & trunk sandbag walking [WT], and both wrist sandbag walking [B] and both wrist & trunk sandbag walking [BT], respectively. Eight infrared cameras were used to collect the raw data. Gait parameters, arm swing, shoulder-pelvic kinematics, and lower extremity joint angle were calculated to examine the differences during walking. Results: As a result, there were no significant differences in the gait parameters, shoulder-pelvis, and lower extremities joint angles, but significant differences were found in the range of motion and the anteversion in arm swing. Conclusion: Wrist and trunk weight loading using sandbags affected the movement of the upper extremities only while it did not affect the movement of the lower extremities. It implies that it can reduce the risk of falling caused by a sudden movement change in lower extremities. In addition, the wrist and trunk weight loading using sandbags can induce changes in movement of the upper extremities independently and contribute to functional rehabilitation through resistance training.

Design of Device for Rotator Cuff Training and Its Experimental Validation with sEMG (회전근개 훈련용 기기 설계와 sEMG를 활용한 실험적 검증)

  • Byun, Sangkyu;Kim, Jaehoon;Chung, Jiyong;Kim, Heeyoung;Shin, Sungwook;Lee, Eunghyuk
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1035-1043
    • /
    • 2021
  • The shoulder is less stable than other joints, making it easier to onset of various shoulder disorders. In addition, limited range of motion and pain in the shoulder due to shoulder disorders restricts daily life and social activities. The problem with exercise therapy can be reduced in exercise effect by causing boredom through simple repetition of motion, thus reducing the patient's willingness to participate. Therefore, this paper aims to provide a treatment method that can induce active participation of patients by developing devices capable of passive, active, and resistance exercise and serious game contents using them. Furthermore, sEMG was used to verify whether the rotational exercise in the horizontal and vertical using serious game contents helps the shoulder movement actually. The measured sEMG signal was classified as 5 phases according to the angle of rotation and calculated the mean integrated EMG. The mean integrated EMG for the experimental results was higher in all phases when rotational was performed compared to those when both horizontal and vertical rotational exercise remained initial posture, indicating an increase in muscle activity.

The Effect of Atypical Anti-psychotic Agents on Obesity and Glucose Metabolism (비정형 항정신병약제가 비만과 당대사에 미치는 영향)

  • Sang Ah Lee;Suk Ju Cho;Jae Cheol Moon
    • Journal of Medicine and Life Science
    • /
    • v.18 no.3
    • /
    • pp.49-55
    • /
    • 2021
  • Atypical antipsychotics are more effective than typical antipsychotics and have fewer side effects such as tardive dyskinesia and extrapyramidal symptoms; therefore, prescriptions of atypical antipsychotics are increasing. However, recently, it has been reported that atypical antipsychotics have a higher incidence of diabetes, hyperglycemia, and obesity than typical antipsychotics. Atypical antipsychotics induce obesity-inhibiting appetite-related receptors such as serotonin and dopamine. Decreased exercise due to improving psychotic symptoms, and genetic characterictics can also cause weight gain. Hyperglycemia and hypoglycemia were another metabolic problem related to treatment with atypical antipsychotics. The mechanisms of hyperglycemia were mainly related obesity, decreased anorexigenic hormones, and increased insulin resistance in multiple organs. There are also reports that genes related to diabetes have an effect on the incidence of diabetes mellitus treated with atypical antipsychotics. On the other hand, although it is not clear why hypoglycemia occurs, it documented in case reports all over the world. There are more reports of atypical antipsychotics than typical antipsychotics and these are frequently reported in Asians. Further research on the mechanism of hypoglycemia related to atypical antipsychotics is strongly recommended.

Molecular Basis of the Hrp Pathogenicity of the Fire Blight Pathogen Erwinia amylovora : a Type III Protein Secretion System Encoded in a Pathogenicity Island

  • Kim, Jihyun F.;Beer, Steven V.
    • The Plant Pathology Journal
    • /
    • v.17 no.2
    • /
    • pp.77-82
    • /
    • 2001
  • Erwinia amylovora causes a devastating disease called fire blight in rosaceous trees and shrubs such as apple, pear, and raspberry. To successfully infect its hosts, the pathogen requires a set of clustered genes termed hrp. Studies on the hrp system of E. amylovora indicated that it consists of three functional classes of genes. Regulation genes including hrpS, hrpS, hrpXY, and hrpL produce proteins that control the expression of other genes in the cluster. Secretion genes, many of which named hrc, encode proteins that may form a transmembrane complex, which is devoted to type III protein secretion. Finally, several genes encode the proteins that are delivered by the protein secretion apparatus. They include harpins, DspE, and other potential effector proteins that may contribute to proliferation of E. amylovora inside the hosts. Harpins are glycine-rich heat-stable elicitors of the hypersensitive response, and induce systemic acquired resistance. The pathogenicity protein DseE is homologous and functionally similar to an avirulence protein of Pseudomonas syringae. The region encompassing the hrpldsp gene cluster of E. amylovora shows features characteristic of a genomic island : a cryptic recombinase/integrase gene and a tRNA gene are present at one end and genes corresponding to those of the Escherichia coli K-12 chromosome are found beyond the region. This island, designated the Hrp pathogenicity island, is more than 60 kilobases in size and carries as many as 60 genes.

  • PDF

Effects of Amifostine on Apoptosis, Cell Cycle and Cytoprotection of Human Colon Cancer Cell Lines

  • Eun Ju Lee
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.287-295
    • /
    • 2023
  • Amifostine was developed to protect cells, but it is known to induce cytotoxicity and apoptosis, and the exact mechanism is unknown. In this study, we investigated how the DNA mismatch repair (MMR) system interacts with p53 to prevent apoptosis, cell cycle arrest, and cytoprotective effects induced by amifostine. HCT116 colon cancer cells sublines HCT116/p53+,HCT116/p53+, HCT116/p53-, HCT116/E6 and HCT116+ch3/E6 cells were used for evaluation. Amifostine induced G1 arrest and increased toxicity two-fold in p53- cells regardless of MMR expression. Both G1 cell cycle arrest and induction of p53 protein peaked at 24 h after the start of amifostine exposure. Both G1 cell cycle arrest and induction of p53 protein peaked at 24 h after the start of amifostine exposure. Amifostine induced the expression of p21 protein in both p53+ and p53- cells. As for apoptosis, compared to p53- cells, p53+ cells showed 3.5~4.2 times resistance to amifostine-induced apoptosis. HCT116+E6 with both p53 and MMR loss showed maximum apoptosis at 48 h, and HCT116+ch3/E6HCT116+ch3/E6 with p53 loss showed maximum apoptosis at 24 h. As a result, it was confirmed through in vitro experiments that amifostine-induced G1 cell cycle arrest and apoptosis are mediated through a pathway dependent on MMR and p53 protein.

The role of 27-hydroxycholesterol in meta-inflammation

  • Yonghae Son;Eunbeen Choi;Yujin Hwang;Koanhoi Kim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.107-112
    • /
    • 2024
  • 27-Hydroxycholesterol (27OHChol), a prominent cholesterol metabolite present in the bloodstream and peripheral tissues, is a kind of immune oxysterol that elicits immune response. Recent research indicates the involvement of 27OHChol in metabolic inflammation (meta-inflammation) characterized by chronic responses associated with metabolic irregularities. 27OHChol activates monocytic cells such that they secrete pro-inflammatory cytokines and chemokines, and increase the expression of cell surface molecules such as pattern-recognition receptors that play key roles in immune cell-cell communication and sensing metabolism-associated danger signals. Levels of 27OHChol increase when cholesterol metabolism is disrupted, and the resulting inflammatory responses can contribute to the development and complications of metabolic syndrome, including obesity, insulin resistance, and cardiovascular diseases. Since 27OHChol can induce chronic immune response by activating monocyte-macrophage lineage cells that play a crucial role in meta-inflammation, it is essential to understand the 27OHChol-induced inflammatory responses to unravel the roles and mechanisms of action of this cholesterol metabolite in chronic metabolic disorders.