• Title/Summary/Keyword: Indoor AP

Search Result 114, Processing Time 0.028 seconds

Analysis of Wi-Fi Signal Characteristics for Indoor Positioning Measurement (실내 위치 측정을 위한 Wi-Fi 신호 특성 분석)

  • Ha, IlKyu;Zhang, Zhehao;Park, HeeJoo;Kim, ChongGun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2177-2184
    • /
    • 2012
  • A different and effective method for indoor positioning system is needed and increased it's importance compare to the outdoor GPS based method. The FingerPrint positioning method is known as a superior method in indoor positioning system that maintains signal strength patterns for RPs(Reference Points) in database and compare the DB with the measured real-time signals on the mobile device. FingerPrint positioning method is necessary to establish an accurate database, but errors can occur by several factors. In this paper, we analyze the signal patterns of each terminal in accordance with connection state of access point and trace that the error in accordance with connection state of access point can be an important error in FingerPrint DB configuration through an experimental case study.

Performance of Indoor Positioning using Visible Light Communication System (가시광 통신을 이용한 실내 사용자 단말 탐지 시스템)

  • Park, Young-Sik;Hwang, Yu-Min;Song, Yu-Chan;Kim, Jin-Young
    • Journal of Digital Contents Society
    • /
    • v.15 no.1
    • /
    • pp.129-136
    • /
    • 2014
  • Wi-Fi fingerprinting system is a very popular positioning method used in indoor spaces. The system depends on Wi-Fi Received Signal Strength (RSS) from Access Points (APs). However, the Wi-Fi RSS is changeable by multipath fading effect and interference due to walls, obstacles and people. Therefore, the Wi-Fi fingerprinting system produces low position accuracy. Also, Wi-Fi signals pass through walls. For this reason, the existing system cannot distinguish users' floor. To solve these problems, this paper proposes a LED fingerprinting system for accurate indoor positioning. The proposed system uses a received optical power from LEDs and LED-Identification (LED-ID) instead of the Wi-Fi RSS. In training phase, we record LED fingerprints in database at each place. In serving phase, we adopt a K-Nearest Neighbor (K-NN) algorithm for comparing existing data and new received data of users. We show that our technique performs in terms of CDF by computer simulation results. From simulation results, the proposed system shows that a positioning accuracy is improved by 8.6 % on average.

A Study on a utilizing Mobile Mapping System for establishing the High Speed Outdoor Positioning DB based on Field Check Data (정위치 기반 고속 실외 측위 DB 구축을 위한 MMS활용 방안에 관한 연구)

  • Lee, Ha Dong;Lee, Yun;Choi, Yun Soo;Jeong, In Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.2
    • /
    • pp.31-37
    • /
    • 2017
  • Recently, governmental authority and local government are looking for a method of utilizing location information of smart phone for urgent rescue in fire and kidnap situation. Under this background, in this study, a method of rapidly collecting, constructing location determination based Wi-Fi AP data utilizing location information of smart phone and mobile mapping system was suggested in order to construct precise positioning information that could be utilized under urgent situation. By performing compensation work for GPS/INS/DMI through collected outcome, position of collected vehicle was acquired. In addition, source data integrating Wi-Fi information and collected position by coupling based on Wi-Fi AP collector and GPS time was constructed and Wi-Fi radiomap was constructed by removing Wi-Fi signal noise that reduces precise position performance. As a result of performing location determination performance assess ment by selecting 10 test positions by each local government, result value of 25.46cm for total local government average and 27.76m for SD could be obtained. It is considered that this result could be utilized as a technology of being able to supplement or substituting GPS location determination technology that is impossible in plocation determination of mobile communication company's base station (200m~2km) and indoor being used at present.

A Study on Multi-Dimensional learning data composition based on Wi-Fi radio fingerprint (Wi-Fi 전파 지문 기반 다차원 학습 데이터 구성에 관한 연구)

  • Yoon, Chang-Pyo;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.639-640
    • /
    • 2018
  • Currently, the technique of identifying location using radio wave fingerprint is widely used in indoor positioning field. At this time, in order to confirm a successful position, it is necessary to construct the data necessary for learning and testing and to construct the multidimensional data. That is, location data collection and data management technology capable of responding to environmental changes that may occur due to various changes in peripheral radio wave fingerprint such as wireless AP, BLE iBeacon, and mobile terminal are required. Therefore, this paper proposes a technique to construct and manage multidimensional data which is less sensitive to environmental changes of radio wave fingerprinting required for positioning.

  • PDF

End-to-end-based Wi-Fi RTT network structure design for positioning stabilization (측위 안정화를 위한 End to End 기반의 Wi-Fi RTT 네트워크 구조 설계)

  • Seong, Ju-Hyeon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.676-683
    • /
    • 2021
  • Wi-Fi Round-trip timing (RTT) based location estimation technology estimates the distance between the user and the AP based on the transmission and reception time of the signal. This is because reception instability and signal distortion are greater than that of a Received Signal Strength Indicator (RSSI) based fingerprint in an indoor NLOS environment, resulting in a large position error due to multipath fading. To solve this problem, in this paper, we propose an end-to-end based WiFi Trilateration Net (WTN) that combines neural network-based RTT correction and trilateral positioning network, respectively. The proposed WTN is composed of an RNN-based correction network to improve the RTT distance accuracy and a neural network-based trilateral positioning network for real-time positioning implemented in an end-to-end structure. The proposed network improves learning efficiency by changing the trilateral positioning algorithm, which cannot be learned through differentiation due to mathematical operations, to a neural network. In addition, in order to increase the stability of the TOA based RTT, a correction network is applied in the scanning step to collect reliable distance estimation values from each RTT AP.

A Positioning Method based on IPS using High Level Signals (고준위 신호를 활용한 IPS 기반 측위 방법)

  • Han, Chang-su;Yi, Hyoun-sup;Jang, Si-Woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.47-49
    • /
    • 2022
  • IPS is an indoor positioning system that replaces GPS, which is less accurate due to walls and roofs inside buildings. Radio signals such as Wi-Fi are used instead of satellite signals, and complex methods are being used to increase accuracy. In this paper, we present a more efficient positioning method than before by applying high-level signals to high-accuracy fingerprint techniques. A radio map is configured with high-level signals collected by utilizing Wi-Fi APs, which are more than in the past. The suitability of use was confirmed by analyzing the pattern represented by the configured radio map for each location.

  • PDF

APPLICATION OF WIFI-BASED INDOOR LOCATION MONITORING SYSTEM FOR LABOR TRACKING IN CONSTRUCTION SITE - A CASE STUDY in Guangzhou MTR

  • Sunkyu Woo;Seongsu Jeong;Esmond Mok;Linyuan Xia;Muwook Pyeon;Joon Heo
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.869-875
    • /
    • 2009
  • Safety is a big issue in the construction sites. For safe and secure management, tracking locations of construction resources such as labors, materials, machineries, vehicles and so on is important. The materials, machineries and vehicles could be controlled by computer, whereas the movement of labors does not have fixed pattern. So, the location and movement of labors need to be monitored continuously for safety. In general, Global Positioning System(GPS) is an opt solution to obtain the location information in outside environments. But it cannot be used for indoor locations as it requires a clear Line-Of-Sight(LOS) to satellites Therefore, indoor location monitoring system could be a convenient alternative for environments such as tunnel and indoor building construction sites. This paper presents a case study to investigate feasibility of Wi-Fi based indoor location monitoring system in construction site. The system is developed by using fingerprint map of gathering Received Signal Strength Indication(RSSI) from each Access Point(AP). The signal information is gathered by Radio Frequency Identification (RFID) tags, which are attached on a helmet of labors to track their locations, and is sent to server computer. Experiments were conducted in a shield tunnel construction site at Guangzhou, China. This study consists of three phases as follows: First, we have a tracking test in entrance area of tunnel construction site. This experiment was performed to find the effective geometry of APs installation. The geometry of APs installation was changed for finding effective locations, and the experiment was performed using one and more tags. Second, APs were separated into two groups, and they were connected with LAN cable in tunnel construction site. The purpose of this experiment was to check the validity of group separating strategy. One group was installed around the entrance and the other one was installed inside the tunnel. Finally, we installed the system inner area of tunnel, boring machine area, and checked the performance with varying conditions (the presence of obstacles such as train, worker, and so on). Accuracy of this study was calculated from the data, which was collected at some known points. Experimental results showed that WiFi-based indoor location system has a level of accuracy of a few meters in tunnel construction site. From the results, it is inferred that the location tracking system can track the approximate location of labors in the construction site. It is able to alert the labors when they are closer to dangerous zones like poisonous region or cave-in..

  • PDF

Radial Reference Map-Based Location Fingerprinting Technique

  • Cho, Kyoung-Woo;Chang, Eun-Young;Oh, Chang-Heon
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.4
    • /
    • pp.207-214
    • /
    • 2016
  • In this paper, we propose a radial reference map-based location fingerprinting technique with constant spacing from an access point (AP) to all reference points by considering the minimum dynamic range of the received signal strength indicator (RSSI) obtained through an experiment conducted in an indoor environment. Because the minimum dynamic range, 12 dBm, of the RSSI appeared every 20 cm during the training stage, a cell spacing of 80 cm was applied. Furthermore, by considering the minimum dynamic range of an RSSI in the location estimation stage, when an RSSI exceeding the cumulative average by ${\pm}6dBm$ was received, a previously estimated location was provided. We also compared the location estimation accuracy of the proposed method with that of a conventional fingerprinting technique that uses a grid reference map, and found that the average location estimation accuracy of the conventional method was 21.8%, whereas that of the proposed technique was 90.9%.

Indoor Location Tracking for First Responders using Data Network (데이터 통신망을 이용한 복수 구조요원 실내 위치 추적)

  • Chun, Se-Bum;Lim, Soon;Lee, Min-Su;Heo, Moon-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.6
    • /
    • pp.810-815
    • /
    • 2013
  • In case Wi-Fi network based First responder's position tracking system is used, range measurement must be generated from RSSI finger print database. However, it is impossible to build up finger print database and to perform rescue operation at same time in the scene of rescue. In this paper, improvised Wi-Fi network without finger print database and pedestrian dead reckoning based first responders tracking system is proposed.

Deep Learning-Based Prediction of the Quality of Multiple Concurrent Beams in mmWave Band (밀리미터파 대역 딥러닝 기반 다중빔 전송링크 성능 예측기법)

  • Choi, Jun-Hyeok;Kim, Mun-Suk
    • Journal of Internet Computing and Services
    • /
    • v.23 no.3
    • /
    • pp.13-20
    • /
    • 2022
  • IEEE 802.11ay Wi-Fi is the next generation wireless technology and operates in mmWave band. It supports the MU-MIMO (Multiple User Multiple Input Multiple Output) transmission in which an AP (Access Point) can transmit multiple data streams simultaneously to multiple STAs (Stations). To this end, the AP should perform MU-MIMO beamforming training with the STAs. For efficient MU-MIMO beamforming training, it is important for the AP to estimate signal strength measured at each STA at which multiple beams are used simultaneously. Therefore, in the paper, we propose a deep learning-based link quality estimation scheme. Our proposed scheme estimates the signal strength with high accuracy by utilizing a deep learning model pre-trained for a certain indoor or outdoor propagation scenario. Specifically, to estimate the signal strength of the multiple concurrent beams, our scheme uses the signal strengths of the respective single beams, which can be obtained without additional signaling overhead, as the input of the deep learning model. For performance evaluation, we utilized a Q-D (Quasi-Deterministic) Channel Realization open source software and extensive channel measurement campaigns were conducted with NIST (National Institute of Standards and Technology) to implement the millimeter wave (mmWave) channel. Our simulation results demonstrate that our proposed scheme outperforms comparison schemes in terms of the accuracy of the signal strength estimation.