A Study on Multi-Dimensional learning data composition based on Wi-Fi radio fingerprint

Wi-Fi 전파 지문 기반 다차원 학습 데이터 구성에 관한 연구

  • Published : 2018.10.18

Abstract

Currently, the technique of identifying location using radio wave fingerprint is widely used in indoor positioning field. At this time, in order to confirm a successful position, it is necessary to construct the data necessary for learning and testing and to construct the multidimensional data. That is, location data collection and data management technology capable of responding to environmental changes that may occur due to various changes in peripheral radio wave fingerprint such as wireless AP, BLE iBeacon, and mobile terminal are required. Therefore, this paper proposes a technique to construct and manage multidimensional data which is less sensitive to environmental changes of radio wave fingerprinting required for positioning.

현재 실내 측위 분야에서 전파 지문을 이용하여 위치를 확인하는 기술이 광범위하게 사용하고 있다. 이때 성공적인 위치 확인을 위해서는 학습과 테스트에 필요한 데이터의 구성 및 다차원 데이터 구성이 필요하다. 즉 무선 AP, BLE iBeacon, Mobile 단말 등의 다양한 주변 전파 지문의 변화로 발생할 수 있는 환경 변화에 대응할 수 있는 위치 데이터 수집 및 데이터 관리 기술이 요구된다. 따라서 본 논문에서는 측위에 필요한 전파 지문의 환경 변화에 덜 민감한 다차원 데이터를 구성하고 관리하는 기법을 제안한다.

Keywords