• Title/Summary/Keyword: Incremental Load Method

Search Result 159, Processing Time 0.023 seconds

Economic dispatch using the equivalent representation method (등가화법에 의한 경제급전)

  • 김준현;황갑구
    • 전기의세계
    • /
    • v.30 no.12
    • /
    • pp.817-821
    • /
    • 1981
  • A simple scheme using the single equivalent machine representation, equivalent loss reprsentation and direct hydro-MW representation are applied to economic dispatch for practical applications. A,simple approach to calculation of incremental transmission losses is proposed from the fast decoupled load flow algorithm. This program is presently being tested on KECO system.

  • PDF

Estimation of Bearing Capacity for Open-Ended Pile Considering Soil Plugging (폐색정도를 고려한 개단말뚝의 지지력 산정)

  • 백규호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.397-404
    • /
    • 2002
  • The bearing capacity of open-ended piles is affected by the degree of soil plugging, which is quantified by the IFR. There is not at present a design criterion for open-ended piles that explicitly considers the effect of IFR on pile load capacity In order to investigate this effect, model pile load tests using a calibration chamber were conducted on instrumented open-ended piles. The results of these tests show that the IFR increases with increasing relative density and increasing horizontal stress of soils. The unit base and shaft resistances decrease with increasing IFR. Based on the results of the model pile tests, new empirical relations for base load capacity and shaft load capacity of open-ended piles are proposed. In order to check the accuracy of predictions made with the proposed equations, the equations were applied to the full-scale pile load test preformed in this study, Based on the comparisons with the pile load test results, the proposed equations appear to produce satisfactory predictions.

  • PDF

Ultimate Load Analysis of Axisymmetric Shells of Revolution Subjected to External Pressure (외압(外壓)을 받는 축대칭(軸對稱) Shell의 한계하중(限界荷重)에 관한 연구(硏究))

  • J.B.,Kim;C.Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 1983
  • This paper describes the application of the finite element method to the large deflection elastic plastic analysis and ultimate load calculation of axisymmetric shell of revolution with initial imperfection subjected to external pressure. The nonlinear equilibrium equations are linearized by the successive incremental method and are solved by the combination of load increment and iteration scheme with considering plastic deformation theory. To get the more realistic effect of large deflection, corrected coordinats and directions of applied load ar every load increment steps are used. The effects of the plasticity, initial imperfection and the shape of shells on the ultimate load of clamped circular cap under external pressure are investigated. Consequently, the following conclusions are obtained; (1) At same geometric parameter $\lambda$, each shape of clamped circular caps yield same elastic ultimate loads in both cases, i.e. with and without initial imperfections, whereas, in the case of elastic-plastic state the shell becomes thicker, the ultimate loads are getting smaller. (2) The effects of initial imperfection to ultimate load are most significant in the elastic case and are more senstive in the elastic-plastic state with the thinner shells.

  • PDF

Nonlinear Analysis Method of the Reinforced Concrete Member Considering the Geometric and the Material Nonlinearities (기하비선형과 재료비선형을 동시에 고려한 철근콘크리트 부재의 비선형 해석)

  • Han, Jae-Ik;Lee, Kyung-Dong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.129-138
    • /
    • 2002
  • The purpose of this study is to propose the nonlinear analysis method which combines the nonlinear incremental method with the layered method to solve the problems due to the geometric and the material nonlinearities. As numerical analysis models, the reinforced concrete simple beam and the steel arch frame are used to verify the algorithm of the proposed nonlinear method. The results are gotten from the computation procedures. According to the results of this study, the fracture pattern of the beam according to the ratio of tensile steel and the strength of the concrete and the steel can be estimated by the proposed method. Therefore, the load-deflection curve of structure can be, exactly, depicted by the proposed method. Also, the rupture load, the site and the depth of crack of the beam can analytically be checked by the proposed method. In this respect, the proposed method contributes for the solving the stability problem of the actual structure.

A Study on the Algorithm for Multiple Bifurcation of Lattice Domes (래티스 돔의 다분기 해석을 위한 알고리즘에 관한 연구)

  • 윤한흠;이갑수;한상을
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.395-402
    • /
    • 1999
  • This paper discusses the theoretical researches subject to elastic buckling problems of the structures. The purpose is to ensure the characteristic of buckling be true by arc-length method and the finite element method. The difficulties in processes calculating the equilibrium curve after buckling is to get the equilibrium owe near singular point at which the determinant of stiffness matrix is zero. The purpose of the load-displacement curve is to determine the buckling load of the structure, and further to get the information about the characteristic after buckling. Here, this paper expresses the incremental solution at particular point by the linear combination of both homogeneous mode and particular mode, then uses the method which gets the unknown parameter including this function, through trial-and-error method including modified N-R convergence process. Finally, this paper describes the multiple bifurcation of truss dome as the numerical examples according to this algorithm.

  • PDF

Analysis of Damage Mechanism for Optimum Design in Discontinuously-Reinforced Composites (불균질입자강화 복합재료의 최적설계를 위한 손상메커니즘 해석)

  • 조영태;조의일
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.106-112
    • /
    • 2004
  • In particle or short-fiber reinforced composites, cracking or debonding of the reinforcements cause a significant damage mode because the damaged reinforcements lose load carrying capacity. The average stress in the inhomogeneity represents its load carrying capacity, and the difference between the average stresses of the intact and broken inhomogeneities indicates the loss of load carrying capacity due to cracking damage. The composite in damage process contains intact and broken reinforcements in a matrix. An incremental constitutive relation of discontinuously-reinforced composites including the progressive cracking damage of the reinforcements have been developed based on the Eshelby's equivalent inclusion method and Mori-Tanaka's mean field concept. Influence of the cracking damage on the stress-strain response of the composites is demonstrated.

Sensitivity of Seismic Response and Fragility to Parameter Uncertainty of Single-Layer Reticulated Domes

  • Zhong, Jie;Zhi, Xudong;Fan, Feng
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1607-1616
    • /
    • 2018
  • Quantitatively modeling and propagating all sources of uncertainty stand at the core of seismic fragility assessment of structures. This paper investigates the effects of various sources of uncertainty on seismic responses and seismic fragility estimates of single-layer reticulated domes. Sensitivity analyses are performed to examine the sensitivity of typical seismic responses to uncertainties in structural modeling parameters, and the results suggest that the variability in structural damping, yielding strength, steel ultimate strain, dead load and snow load has significant effects on the seismic responses, and these five parameters should be taken as random variables in the seismic fragility assessment. Based on this, fragility estimates and fragility curves incorporating different levels of uncertainty are obtained on the basis of the results of incremental dynamic analyses on the corresponding set of 40 sample models generated by Latin Hypercube Sampling method. The comparisons of these fragility curves illustrate that, the inclusion of only ground motion uncertainty is inappropriate and inadequate, and the appropriate way is incorporating the variability in the five identified structural modeling parameters as well into the seismic fragility assessment of single-layer reticulated domes.

Nonlinear bending analysis of functionally graded CNT-reinforced composite plates

  • Cho, Jin-Rae
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • In this paper, a nonlinear numerical method to solve the large deflection problem is introduced. And the non-dimensional load-deflection behavior of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates is parametrically investigated. The large deflection problem is formulated according to the von Kármán nonlinear theory and the (1,1,0)* hierarchical model, and it is approximated by 2-D natural element method (NEM). The shear locking phenomenon is suppressed by the selectively reduced integration method. The nonlinear matrix equations are solved by combining the incremental loading scheme and the Newton-Raphson iteration method. The proposed method is validated from the benchmark experiments, where the propose method shows an excellent agreement with the reference methods. The nonlinear behavior of FG-CNTRC plates is evaluated in terms of the non-dimensional load-deflection curve, and it is parametrically investigated with respect to the existence/non-existence and gradient pattern of CNTs, the width-to-thickness and aspect ratios of plates and the type of boundary conditions. The non-dimensional central deflection is significantly reduced when CNTs and added, and it decreases with the volume fraction of CNTs. But, it shows a uniform increase in proportion to the width-to-thickness and aspect ratios. Both the gradient pattern of CNTs and the type of boundary conditions do also show the remarkable effects.

On the Study of System Reliability Analysis of Tension Leg Platforms (TLP 해양구조물의 시스템 신뢰성 해석에 관한 연구)

  • Joo-Sung,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.2
    • /
    • pp.55-62
    • /
    • 1990
  • In this paper, another method for system reliability analysis, called the extended incremental load method, is introduced. The method is an extension of the conventional incremental load method and has been developed aiming at evaluating the probability of system failure(or system reliability) of continuous structures such as floating offshore structures under the multiple loading condition, more realistically considering the post-ultimate behaviour of failed components and directly using the strength formulae of principle components in a structure with employing the modified safety margin equation proposed herein in the system analysis. The method has been applied to the Hutton TLP operated in the Hutton field in the North Sea and a certain variant of the design using the TLP Rule Case Committee type improved strength models. System failure probability and corresponding system reliability indices are derived for a more economical and efficient design. The redundancy characteristics are also addressed. The TLP forms are shown to possess high reserve strength and system safety.

  • PDF