• Title/Summary/Keyword: In-situ measurements

Search Result 524, Processing Time 0.024 seconds

Condition Monitoring under In-situ Lubrication Status of Bearing Using Infrared Thermography (적외선열화상을 이용한 베어링의 실시간 윤활상태에 따른 상태감시에 관한 연구)

  • Kim, Dong-Yeon;Hong, Dong-Pyo;Yu, Chung-Hwan;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.121-125
    • /
    • 2010
  • The infrared thermography technology rather than traditional nondestructive methods has benefits with non-contact and non-destructive testings in measuring for the fault diagnosis of the rotating machine. In this work, condition monitoring measurements using this advantage of thermography were proposed. From this study, the novel approach for the damage detection of a rotating machine was conducted based on the spectrum analysis. As results, by adopting the ball bearing used in the rotating machine applied extensively, an spectrum analysis with thermal imaging experiment was performed. Also, as analysing the temperature characteristics obtained from the infrared thermography for in-situ rotating ball bearing under the lubrication condition, it was concluded that infrared thermography for condition monitoring in the rotating machine at real time could be utilized in many industrial fields.

Review of Numerical Approaches to Simulate Time Evolution of Excavation-Induced Permeability in Argillaceous Rocks (점토질 퇴적암 내 굴착영향영역 투수특성의 시간경과 변화 파악을 위한 수치해석기법에 대한 고찰)

  • Kim, Hyung-Mok;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.519-539
    • /
    • 2020
  • We reviewed numerical approaches to assess a hydraulic properties of excavation-disturbed zone (EDZ)created in argillaceous sedimentary rocks. It has been reported that fractures in the sedimentary rocks containing expansive clays are gradually closing due to swelling and their permeabilities are evolving to the level of in-tact rock, which is known as a self-healing or self-sealing process. The numerical approaches introduced here are capable of simulating spatio-temporal variation of EDZ permeability during long-term operation of a repository by including the self-healing characteristics of fractures, which wa observed in laboratory as well as in-situ experiments, The applicability of the numerical approaches was verified from the comparison to in-situ measurements of EDZ permeability at underground research laboratories.

Assessment of the Ochang Plain NDVI using Improved Resolution Method from MODIS Images (MODIS영상의 고해상도화 수법을 이용한 오창평야 NDVI의 평가)

  • Park, Jong-Hwa;La, Sang-Il
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.6
    • /
    • pp.1-12
    • /
    • 2006
  • Remote sensing cannot provide a direct measurement of vegetation index (VI) but it can provide a reasonably good estimate of vegetation index, defined as the ratio of satellite bands. The monitoring of vegetation in nearby urban regions is made difficult by the low spatial resolution and temporal resolution image captures. In this study, enhancing spatial resolution method is adapted as to improve a low spatial resolution. Recent studies have successfully estimated normalized difference vegetation index (NDVI) using improved resolution method such as from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard EOS Terra satellite. Image enhancing spatial resolution is an important tool in remote sensing, as many Earth observation satellites provide both high-resolution and low-resolution multi-spectral images. Examples of enhancement of a MODIS multi-spectral image and a MODIS NDVI image of Cheongju using a Landsat TM high-resolution multi-spectral image are presented. The results are compared with that of the IHS technique is presented for enhancing spatial resolution of multi-spectral bands using a higher resolution data set. To provide a continuous monitoring capability for NDVI, in situ measurements of NDVI from paddy field was carried out in 2004 for comparison with remotely sensed MODIS data. We compare and discuss NDVI estimates from MODIS sensors and in-situ spectroradiometer data over Ochang plain region. These results indicate that the MODIS NDVI is underestimated by approximately 50%.

Synthesis and Characterization of Biodegradable Thermo- and pH-Sensitive Hydrogels Based on Pluronic F127/Poly($\varepsilon$-caprolactone) Macromer and Acrylic Acid

  • Zhao, Sanping;Cao, Mengjie;Wu, Jun;Xu, Weilin
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.1025-1031
    • /
    • 2009
  • Several kinds of biodegradable hydrogels were prepared via in situ photopolymerization of Pluronic F127/poly($\varepsilon$-caprolactone) macromer and acrylic acid (AA) comonomer in aqueous medium. The swelling kinetics measurements showed that the resultant hydrogels exhibited both thermo- and pH-sensitive behaviors, and that this stimuli-responsiveness underwent a fast reversible process. With increasing pH of the local buffer solutions, the pH sensitivity of the hydrogels was increased, while the temperature sensitivity was decreased. In vitro hydrolytic degradation in the buffer solution (pH 7.4, $37^{\circ}C$), the degradation rate of the hydrogels was greatly improved due to the introduction of the AA comonomer. The in vitro release profiles of bovine serum albumin (BSA) in-situ embedded into the hydrogels were also investigated: the release mechanism of BSA based on the Peppas equation was followed Case II diffusion. Such biodegradable dual-sensitive hydrogel materials may have more advantages as a potentially interesting platform for smart drug delivery carriers and tissue engineering scaffolds.

Growth and Characterization of ZnO Thin Films on R-plane Sapphire Substrates by Plasma Assisted Molecular Beam Epitaxy (R-면 사파이어 기판 위에 플라즈마 분자선 에피탁시법을 이용한 산화아연 박막의 성장 및 특성평가)

  • Han Seok-Kyu;Hong Soon-Ku;Lee Jae-Wook;Lee Jeong-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.923-929
    • /
    • 2006
  • Single crystalline ZnO films were successfully grown on R-plane sapphire substrates by plasma-assisted molecular beam epitaxy. Epitaxial relationship between the ZnO film and the R-plane sapphire was determined to be $[-1101]Al_2O_3{\parallel}[0001]ZnO,\;[11-20]Al_2O_2{\parallel}[-1100]ZnO$ based on the in-situ reflection high-energy electron diffraction analysis and confirmed again by high-resolution X-ray diffraction measurements. Grown (11-20) ZnO films surface showed mound-like morphology along the <0001>ZnO direction and the RMS roughness was about 4 nm for $2{\mu}m{\times}2{\mu}m$ area.

RETRIEVAL OF SOIL MOISTURE AND SURFACE ROUGHNESS FROM POLARIMETRIC SAR IMAGES OF VEGETATED SURFACES

  • Oh, Yi-Sok;Yoon, Ji-Hyung
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.33-36
    • /
    • 2008
  • This paper presents soil moisture retrieval from measured polarimetric backscattering coefficients of a vegetated surface. Based on the analysis of the quite complicate first-order radiative transfer scattering model for vegetated surfaces, a simplified scattering model is proposed for an inversion algorithm. Extraction of the surface-scatter component from the total scattering of a vegetation canopy is addressed using the simplified model, and also using the three-component decomposition technique. The backscattering coefficients are measured with a polarimetric L-band scatterometer during two months. At the same time, the biomasses, leaf moisture contents, and soil moisture contents are also measured. Then the measurement data are used to estimate the model parameters for vv-, hh-, and vh-polarizations. The scattering model for tall-grass-covered surfaces is inverted to retrieve the soil moisture content from the measurements using a genetic algorithm. The retrieved soil moisture contents agree quite well with the in-situ measured soil moisture data.

  • PDF

Light scattering from restructured colloidal silica aggregates (재구조화된 콜로이드 실리카 응집체에 대한 광 산란)

  • 임영훈
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.167-171
    • /
    • 1992
  • We present the static and dynamic light scattering results of the salt induced restructured colloidal silica aggregates. We also report the results from the transmission electron micrographs which confirms the individual sizes of the particles and the local structure of the ramified aggregates. The fractal dimensions of the restructuring silica aggregates are considerably different with in-situ light scattering measurements. The measured fractal dimensions, $D_{F}$, is 2.21 for the 0.5 wt.% concentration of the salt induced Ludox-AM. The Rayleigh linewidth for 0.1 wt.% concentration of Ludox-AM is discussed.

  • PDF

Spatial Distribution of Extremely Low Sea-Surface Temperature in the Global Ocean and Analysis of Data Visualization in Earth Science Textbooks (전구 대양의 극저 해수면온도 공간 분포와 지구과학교과서 데이터 시각화 분석)

  • Park, Kyung-Ae;Son, Yu-Mi
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.599-616
    • /
    • 2020
  • Sea-surface temperature (SST) is one of the most important oceanic variables for understanding air-sea interactions, heat flux variations, and oceanic circulation in the global ocean. Extremely low SSTs from 0℃ down to -2℃ should be more important than other normal temperatures because of their notable roles in inducing and regulating global climate and environmental changes. To understand the temporal and spatial variability of such extremely low SSTs in the global ocean, the long-term SST climatology was calculated using the daily SST database of satellites observed for the period from 1982 to 2018. In addition, the locations of regions with extremely low surface temperatures of less than 0℃ and monthly variations of isothermal lines of 0℃ were investigated using World Ocean Atlas (WOA) climatology based on in-situ oceanic measurements. As a result, extremely low temperatures occupied considerable areas in polar regions such as the Arctic Ocean and Antarctic Ocean, and marginal seas at high latitudes. Six earth science textbooks were analyzed to investigate how these extremely low temperatures were visualized. In most textbooks, illustrations of SSTs began not from extremely low temperatures below 0℃ but from a relatively high temperature of 0℃ or higher, which prevented students from understanding of concepts and roles of the low SSTs. As data visualization is one of the key elements of data literacy, illustrations of the textbooks should be improved to ensure that SST data are adequately visualized in the textbooks. This study emphasized that oceanic literacy and data literacy could be cultivated and strengthened simultaneously through visualizations of oceanic big data by using satellite SST data and oceanic in-situ measurements.

In Situ Monitoring of the MBE Growth of AlSb by Spectroscopic Ellipsometry

  • Kim, Jun-Yeong;Yun, Jae-Jin;Lee, Eun-Hye;Bae, Min-Hwan;Song, Jin-Dong;Kim, Yeong-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.342-343
    • /
    • 2013
  • AlSb is a promising material for optical devices, particularly for high-frequency and nonlinear-optical applications. And AlSb offers significant potential for devices such as quantum-well lasers, laser diodes, and heterojunction bipolar transistors. In this work we study molecular beam epitaxy (MBE) growth of an unstrained AISb film on a GaAs substrate and identify the real-time monitoring capabilities of in situ spectroscopic ellipsometry (SE). The samples were fabricated on semi-insulating (0 0 1) GaAs substrates using MBE system. A rotating sample stage ensured uniform film growth. The substrate was first heated to $620^{\circ}C$ under As2 to remove surface oxides. A GaAs buffer layer approximately 200 nm- thick was then grown at $580^{\circ}C$. During the temperature changing process from $580^{\circ}C$ to $530^{\circ}C$, As2 flux is maintained with the shutter for Ga being closed and the reflection high-energy electron diffraction (RHEED) pattern remaining at ($2{\times}4$). Upon reaching the preset temperature of $530^{\circ}C$, As shutter was promptly closed with Sb shutter open, resulting in the change of RHEED pattern from ($2{\times}4$) to ($1{\times}3$). This was followed by the growth of AlSb while using a rotating-compensator SE with a charge-coupled-device (CCD) detector to obtain real-time SE spectra from 0.74 to 6.48 eV. Fig. 1 shows the real time measured SE spectra of AlSb on GaAs in growth process. In the Fig. 1 (a), a change of ellipsometric parameter ${\Delta}$ is observed. The ${\Delta}$ is the parameter which contains thickness information of the sample, and it changes in a periodic from 0 to 180o with growth. The significant change of ${\Delta}$ at~0.4 min means that the growth of AlSb on GaAs has been started. Fig. 1b shows the changes of dielectric function with time over the range 0.74~6.48 eV. These changes mean phase transition from pseudodielectric function of GaAs to AlSb at~0.44 min. Fig. 2 shows the observed RHEED patterns in the growth process. The observed RHEED pattern of GaAs is ($2{\times}4$), and the pattern changes into ($1{\times}3$) with starting the growth of AlSb. This means that the RHEED pattern is in agreement with the result of SE measurements. These data show the importance and sensitivity of SE for real-time monitoring for materials growth by MBE. We performed the real-time monitoring of AlSb growth by using SE measurements, and it is good agreement with the results of RHEED pattern. This fact proves the importance and the sensitivity of SE technique for the real-time monitoring of film growth by using ellipsometry. We believe that these results will be useful in a number of contexts including more accurate optical properties for high speed device engineering.

  • PDF

Thermal Investigation of Joule-Heating-Induced Crystallization of Amorphous Silicon Thin Film (비정질 실리콘의 결정화를 위한 줄 가열 유도 결정화 공정에 대한 열적 연구)

  • Kim, Dong-Hyun;Park, Seung-Ho;Hong, Won-Eui;Ro, Jae-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.221-228
    • /
    • 2011
  • The large-area crystallization of amorphous silicon thin films on glass backplanes is one of the key technologies in the manufacture of flat-panel displays. Joule-heating induced crystallization (JIC) is a recently introduced crystallization technology. It is considered a highly promising technique for fabricating OLEDs, because the film of amorphous silicon on glass can be crystallized in tens of microseconds, minimizing thermal and structural damage to the glass. In this study, we theoretically and experimentally investigated the temperature variation during the phase transformation. The critical temperatures for crystallization were determined for both solid-solid and solid-liquidsolid transitions, by carrying out in-situ temperature measurements and numerical analysis of the JIC.