DOI QR코드

DOI QR Code

점토질 퇴적암 내 굴착영향영역 투수특성의 시간경과 변화 파악을 위한 수치해석기법에 대한 고찰

Review of Numerical Approaches to Simulate Time Evolution of Excavation-Induced Permeability in Argillaceous Rocks

  • 김형목 (세종대학교 지구자원시스템공학과) ;
  • 박의섭 (한국지질자원연구원 지질환경연구본부)
  • Kim, Hyung-Mok (Department of Energy Resources and Geosystems Engineering, Sejong University) ;
  • Park, Eui-Seob (Deep Subsurface Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2020.12.14
  • 심사 : 2020.12.23
  • 발행 : 2020.12.31

초록

본 고에서는 점토질 퇴적암 부지에 건설되는 처분갱도 주변 굴착영향영역에서의 투수특성을 평가하기 위한 수치해석기법을 검토하였다. 팽창성 점토를 함유한 퇴적암에 형성된 굴착영향영역 내 균열은 포화과정에서 점진적으로 간극을 상실하고 주변 모암의 투수계수에 수렴해 가는 자기 치유(self-healing) 혹은 자기 밀봉(self-sealing) 특성을 보이는 것으로 알려져 있다. 본고에 소개된 수치해석기법은 실내 및 현장실험을 통해 관측된 균열의 자기 치유 거동을 고려함으로써 처분장 건설 후 장기 운영과정에서 예상되는 굴착영향영역 투수계수의 시공간적 변화를 파악할 수 있는 특징이 있다. 지하연구시설 내 굴착 갱도 주변에서 현장투수시험을 통해 획득한 투수계수 측정치와 수치해석에 의한 결과를 비교 분석함으로서 활용타당성을 검증하였다.

We reviewed numerical approaches to assess a hydraulic properties of excavation-disturbed zone (EDZ)created in argillaceous sedimentary rocks. It has been reported that fractures in the sedimentary rocks containing expansive clays are gradually closing due to swelling and their permeabilities are evolving to the level of in-tact rock, which is known as a self-healing or self-sealing process. The numerical approaches introduced here are capable of simulating spatio-temporal variation of EDZ permeability during long-term operation of a repository by including the self-healing characteristics of fractures, which wa observed in laboratory as well as in-situ experiments, The applicability of the numerical approaches was verified from the comparison to in-situ measurements of EDZ permeability at underground research laboratories.

키워드

과제정보

한국지질자원연구원 2020년 주요사업의 일환으로 수행되었으며, 제1저자는 과학기술정보통신부의 재원으로 수행되는 한국연구재단의 기초연구사업(2019R1F1A1058711)의 지원을 받았습니다. 지원에 감사드립니다.

참고문헌

  1. Alcolea, A. Kuhlmann, U. Marschall, P., et al., 2016. A pragmatic approach to abstract the excavation damaged zone around tunnels of a geological radioactive waste repository: application to the HG-A experiment in Mont Terri, Radioactive Waste Confinement: Clay in Natural and Engineered Barriers. Geological Society, London, Special Publications 443.
  2. Armand, G., Leveau, F., Nussbaum, C., Vaissiere, RL, Noiret, A, Jaeggi, D, Landrein, P, Righini, C. 2014. Geometry and properties of the excavation-induced fractures at the Meuse/Haute-Marne URL drifts. Rock Mech Rock Eng 47:21-41. https://doi.org/10.1007/s00603-012-0339-6
  3. Aoyagi, K., Ishii, E., Ishida, T. 2017. Field observation and failure analysis of an Excavation Damaged Zone in the Horonobe Underground Research Laboratory. J MMIJ 133:25-33. https://doi.org/10.2473/journalofmmij.133.25
  4. Aoyagi, K., & Ishii, E. 2018. A Method for Estimating the Highest Potential Hydraulic Conductivity in the Excavation Damaged Zone in Mudstone. Rock Mechanics and Rock Engineering. doi:10.1007/s00603-018-1577-z.
  5. Autio, J., Gribi, P., Johnson, L., Marschall, P. 2006. Effect of excavation damaged zone on gas migration in a KBS-3H type repository at Olkiluoto, Physics and Chemistry of the Earth 31:649-653. https://doi.org/10.1016/j.pce.2006.04.016
  6. Bieniawski, ZT. 1967. Mechanism of brittle fracture of rock, parts I, II and III. Int J Rock Mech Min Sci 4:395-430. https://doi.org/10.1016/0148-9062(67)90030-7
  7. Birkholzer, J.T., Tsang, CF., Bond, AE., Hudson, JA., Jing, L., and Stephansson, O. 2019. 25 years of DECOVALEX - Scientific advances and lessons learned from an international research collaboration in coupled subsurface processes, Int. J. Rock Mech. Min. Sci. 122, 103995. https://doi.org/10.1016/j.ijrmms.2019.03.015
  8. Bossart, P., Meier, PM, Moeri, A, Trick, T, Mayor, JC. 2002. Geological and hydraulic characterization of the excavation disturbed zone in the Opalinus Clay of the Mont Terri Rock Laboratory. Eng Geol 66:19-38. https://doi.org/10.1016/S0013-7952(01)00140-5
  9. Bossart, P., Trick, T, Meier, PM, Mayor, JC. 2004. Structural and hydrogeological characterization of the excavation-disturbed zone in the Opalinus Clay (Mont Terri Project, Switzerland). Appl Clay Sci 26:429-448. https://doi.org/10.1016/j.clay.2003.12.018
  10. Baechler, S., Lavanchy, JM, Armand, G, Cruchaudet, M. 2011. Characterisation of the hydraulic properties within the EDZ around drifts at level?490 m of the Meuse/Haute-Marne URL: a methodology for consistent interpretation of hydraulic tests. Phys Chem Earth 36:1922-1931. https://doi.org/10.1016/j.pce.2011.10.005
  11. Choi, S., Kihm, Y.H., Kim E., Cheon, D.S., 2020, Rock Mechanical Aspects in Site Characterization for HLW Geological Disposal: Current Status and Case Studies, TUNNEL & UNDERGROUND SPACE Vol.30, No.2, 2020, pp.136-148. https://doi.org/10.7474/TUS.2020.30.2.136
  12. Ishii, E., 2017. Estimation of the highest potential transmissivity of discrete shear fractures using the ductility index, International Journal of Rock Mechanics and Mining Sciences 100:10-22. https://doi.org/10.1016/j.ijrmms.2017.10.017
  13. Itasca Consulting Group Inc. 2009. FLAC3D Fast Lagrangian analysis of continua in 3 dimensions user's guide. Itasca Consulting Group Inc., Minneapolis
  14. JNC 2003. Horonobe Underground Research Laboratory project plans for surface-based investigations (Phase 1). JNX TN5510 2003-002.
  15. Kwon, S. Cho, W.J. 2008. The influence of an excavation damaged zone on the thermalmechanical and hydro-mechanical behaviors of an underground excavation. Engineering Geology 101(3-4), 110-123. https://doi.org/10.1016/j.enggeo.2008.04.004
  16. Kwon, S. Min, K.B., 2020. An Introduction to the DECOVALEX-2019 Task G: EDZ Evolution - Reliability, Feasibility, and Significance of Measurements of Conductivity and Transmissivity of the Rock Mass, TUNNEL & UNDERGROUND SPACE Vol.30, No.4, 2020, pp.306-319. https://doi.org/10.7474/TUS.2020.30.4.306
  17. Lajtai, EZ. 1974. Brittle fracture in compression. Int J Fract 10:525-536. https://doi.org/10.1007/BF00155255
  18. Lee, H.S., 2007. Analysis of Benchmark Test Model for Evaluation of Damage Characteristics of Rock Mass near Radioactive Waste Repository, Tunn. Undergr. Sp. 17(1), 32-42.
  19. Lisjak, A., Tatone, B. S. A., Mahabadi, O. K., Grasselli, G., Marschall, P., Lanyon, G. W., Nussbaum, C. 2015. Hybrid Finite-Discrete Element Simulation of the EDZ Formation and Mechanical Sealing Process Around a Microtunnel in Opalinus Clay. Rock Mechanics and Rock Engineering, 49(5), 1849-1873. doi:10.1007/s00603-015-0847-2
  20. Marschall, P., Trick, T. Lanyon, GW. Delay, J. Shao, H. 2008. Hydro-Mechanical evolution of damaged zones around a microtunnel in a claystone formation of the Swiss Jura mountains, The 42nd US Rock Mechanics Symposium (USRMS).
  21. Marschall, P., Giger, S., De La Vassiere, R., Shao, H., Leung, H., Nussbaum, C. Alcolea, A. 2017. Hydro-mechanical evolution of the EDZ as transport path for radionuclides and gas: insights from the Mont Terri rock laboratory (Switzerland). Swiss Journal of Geosciences, 110(1), 173-194. doi:10.1007/s00015-016-0246-z
  22. Martin, C.D. and G.W. Lanyon. 2003. Measurement of in-situ stress in weak rocks at Mont Terri Rock Laboratory, Switzerland. International Journal of Rock Mechanics and Mining Sciences 40(7-8), 1077-1088. https://doi.org/10.1016/S1365-1609(03)00113-8
  23. Nagra. 2016. Production, consumption and transport of gases in deep geological repositories according to the Swiss disposal concept. Nagra Technical Report, NTB 16-03, Nagra, Wettingen, Switzerland. http://www.nagra.ch.
  24. NUMO. 2011. Excavation Damaged Zones Assessment, NWMO DGR-TR-2011-21
  25. Park, S., Kwon, S., 2017. Status of researches of excavation damaged zone in foreign underground research laboratories constructed for developing high-level radioactive waster disposal techniques, Journal of Korean Society of Explosive & Blasting Engineering 35(3): pp.31-54.
  26. Perras, MA, Diederichs, MS. 2014. A review of the tensile strength of rock: concepts and testing. Geotech Geol Eng 32:525-546. https://doi.org/10.1007/s10706-014-9732-0
  27. Phillips, T., Kampman, N., Bisdom, K., Forbes Inskip, N. D., den Hartog, S. A. M., Cnudde, V., & Busch, A. 2020. Controls on the intrinsic flow properties of mudrock fractures: A review of their importance in subsurface storage. Earth-Science Reviews, 103390. doi:10.1016/j.earscirev.2020.103390.
  28. Sato, T., Kikuchi, T., Sugihara, K. 2000. In-situ experiments on an excavation disturbed zone induced by mechanical excavation in neogene sedimentary rock at tono mine, central Japan. Eng Geol 56:97-108. https://doi.org/10.1016/S0013-7952(99)00136-2
  29. Shao, H., Schuster, K., Sonnke, J., Brauer, V. 2008. EDZ development in indurated clay formations? in situ borehole measurements and coupled HM modeling. Phys Chem Earth 33:5388-5395.
  30. Tsang, C.F., Bernier, F. Davies, C. 2005. Geohydromechanical processes in the Excavation Damaged Zone in crystalline rock, rock salt, and indurated and plastic clays - In the context of radioactive waste disposal, Int. J. Rock Mech. Min. Sci. 42(1), 109-125. https://doi.org/10.1016/j.ijrmms.2004.08.003
  31. Voltolini, M., Ajo-Franklin, J. B. 2020. The Sealing Mechanisms of a Fracture in Opalinus Clay as Revealed by in situ Synchrotron X-Ray Micro-Tomography. Frontiers in Earth Science, 8. doi:10.3389/feart.2020.00207
  32. Wileveau, Y., Cornet, FH. Desroches, J. Blumling, P. 2007. Complete in situ stress determination in an argillite sedimentary formation. Physics and Chemistry of the Earth 32(8-14), 866-878. https://doi.org/10.1016/j.pce.2006.03.018
  33. Yong, S. 2007. A three-dimensional analysis of excavation-induced perturbations in the Opalinus Clay at the Mont Terri Rock Laboratory. Ph.D dissertation, Swiss Federal Institute of Technology in Zurich, Zurich, Switzerland, p. 167.
  34. Zhang, C.-L. 2011. Experimental evidence for self-sealing of fractures in claystone. Physics and Chemistry of the Earth, Parts A/B/C, 36(17-18), 1972-1980. doi:10.1016/j.pce.2011.07.030.