• Title/Summary/Keyword: In-situ FT-IR

Search Result 61, Processing Time 0.03 seconds

MWCNT/Fibrin Bionanocomposites by in situ Enzymatic Polymerization

  • Kim, Mi-Jin;Jang, Jun-Ho;Han, Jung-Hun;Lee, Yong-Won;Cho, Sang-Min;Son, Sung-Yong;Hulme, John;Choi, In-Sung S.;Paik, Hyun-Jong;An, Seong-Soo A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.405-408
    • /
    • 2009
  • In this work multiwalled carbon nanotube (MWCNT)/fibrin hybrid structures were synthesized via the transglutaminase- catalyzed polymerization of fibrinogen (FBG). Specifically, FBG was tethered onto oxidized MWCNTs by amide coupling, and the in situ polymerization of FBG to fibrin was performed by plasma transglutaminase (Factor XIIIa) in the presence of thrombin. The attached FBG was found to be biologically active and was polymerized to fibrin by thrombin and Factor XIIIa. MWCNT-FBG and MWCNT-Fibrin structures were characterized by FT-IR spectroscopy, transmission electron microscopy, and energy-dispersive X-ray (EDX) spectroscopy.

Study on Fabrication and Thermal Properties of the ABS/silicate Composites (ABS/실리케이트 복합체의 제조 및 열적특성 연구)

  • Youn, Lee-Seol;Kim, Youn-Cheol
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.301-305
    • /
    • 2011
  • ABS/silicate composites with different clay types and compositions were prepared by in situ emulsion polymerization. The chemical structure of ABS was confirmed by the change of C-H stretching peak(near 3000 $cm^{-1}$) in fourier transform-infrared(FT-IR) spectrum. The thermal properties of the ABS/silicate composites were investigated by differential scanning calorimetry(DSC) and thermogravimetric analyzer(TGA). There was no distinct change in glass transition temperature of the ABS/silicate composites with different clay types. TGA curve indicates a dramatic increase in degradation temperature in case of ABS/20A composite with 3 wt% 20A. The silicate dispersion in the composites was measured by X-ray diffraction(XRD). The silicate dispersion in ABS/20A composites depended on the 20A composition. XRD results showed that the diffraction peak of the ABS/20A composite appeared when the content of 20A was higher than 5 wt%.

Synthesis of Poly(epoxy-imide)-Nano Silica Hybrid Film via CS Sol-gel Process and Their Dielectric Properties (CS졸을 이용한 Poly(epoxy-imide)-나노 Silica 하이브리드 필름의 합성과 유전특성)

  • Han, Se-Won;Han, Dong-Hee;Kang, Dong-Pil;Kang, Young-Taec
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.35-40
    • /
    • 2007
  • The new PEI(poly(epoxy-imide))-nano Silica film has been synthesized via in situ CS sol process, and the chemical bonding and microstructure of nano silica dispersed in resin were examined by FT-IR, TAG and SEM. The dielectric properties of these hybrid films over a given temperature and frequency ranges have been studied in a point of view of stable chemical bonding of nano Silica filler. The results from IR spectra and SEM photograph indicated that PEI-Silica hybrid film prepared with nano CS sol process has been synthesized in uniform and chemical bonding. The decrease property of dielectric constant with CS content, tangent loss consistent of given frequency and temperature has been explained in terms of the chain movement of polymer through chemical bonging and size effect of nano silica. The new PEI-CS sol hybrid film with such stable chemical and dielectric properties was expected to be used as a high functional coating application in ET, IT and electric power products.

In-situ functionalized biomass derived graphite-supported BiFeO3 for eradication of pollutants

  • Deepeka, Deepeka;Paramdeep, Kaur;Jyoti, Jyoti;Sandeep, Bansal;Sonal, Singhal
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.527-543
    • /
    • 2022
  • A novel, green, versatile and magnetically retrievable BiFeO3/CDR (Bismuth ferrite/coriander) nanocomposites were fabricated via simple wet chemical method utilizing in situ functionalized, cheap coriander seed powder (CDR 5%, 10%, 15% and 20 wt%) as a fuel to enhance the efficiency of pristine BiFeO3. A comparative study was performed between BiFeO3/CDR and BiFeO3/CNT (Bismuth ferrite/carbon nanotubes) nanocomposites for the removal of various hazardous pollutants from waste water. The successful synthesis of the fabricated nanomaterials was monitored via FT-IR, Powder XRD, FE-SEM, CV, VSM, CHNS/O and XPS studies. The synthesized nanomaterials were employed for the oxidative degradation of Carbol fuchsin, Reactive black 5, Ciprofloxacin and Doxorubicin; adsorption of a pesticide malathion; and reduction studies for Para-nitrophenol (PNP). The fabricated nanomaterials (BiFeO3/CDR) showcased excellent efficiency and comparable results with (BiFeO3/CNT) for the removal of model pollutants. Moreover, synthesized green heterojunction was also testified for mixture of textile and pharmaceutical waste. Hence CDR can be utilized as a better alternative of CNTs.

Formation of Silver Nanoparticles in Polystyrene-b-Poly(oxyethylene methacrylate) Block Copolymer Membranes (Polystyrene-b-Poly(oxyethylene methacrylate) 블록 공중합체 막을 이용한 은 나노입자 생성)

  • Koh, Joo-Hwan;Seo, Jin-Ah;Roh, Dong-Kyu;Kim, Jong-Hak
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.55-61
    • /
    • 2010
  • A diblock copolymer of polystyrene-b-poly(oxyethylene methacrylate) (PS-b-POEM) was synthesized via atom transfer radical polymerization (ATRP), as revealed by FT-IR spectroscopy. The self-assembled block copolymer membrane was prepared and used to template the growth of silver nanoparticles in the solid state by the introduction of $AgCF_3SO_3$ precursor and UV irradiation process. Transmission electron microscopy (TEM) and UV-visible spectroscopy confirmed the in situ formation of silver nanoparticles within the block copolymer membranes, and the size of nanoparticles were controlled by adjusting the moiety of hydrophilic POEM domains. PS-b-POEM block copolymer with a lower POEM content was effective in generating smaller size of metal nanoparticles.

오존에 의한 토양유기물질의 구조적 변화 특성

  • 정해룡;배기진;최희철
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.45-48
    • /
    • 2001
  • The packed column experiments were conducted with a field soil, collected directly from the aquifer located at Bonchon industrial complex in K-city in order to characterize SOM reaction with ozone and to delineate the transformation of water soluble SOM after ozonation. As reaction time increased, water soluble organic matter increased, and this organic matter was in the range of 500∼1000 dalton. pH of extractants decreased with the increase of ozonation time. This Is because aromtic compounds in SOM were oxidized and carboxylic acid groups were formed. From the FT-IR spectra, the content of carboxylate increased as ozone injection time increased and hydroxyl group, which represents phenolic and alcoholic hydroxyl groups decreased. This is because oxidative ring fission formed carboxyl acid groups. This result provides a good agreement with pH decrease.

  • PDF

Synthesis and Thermo-mechanical Property of Multi-walled Carbon Nanotubes/Poly(methyl methacrylate-co-butyl acrylate) Nanocomposites Prepared Using Emulsion Polymerizations in the Presence of Amphiphilic Random Terpolymer

  • Chang, Woo-Hyuck;Ki, Ho-Seong;Cheong, In-Woo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.289-289
    • /
    • 2006
  • The carboxylated MWNTs were successfully prepared by conventional acid treatment, and their structures were confirmed by FT-IR, Raman and TEM analysis. The water-dispersibility of the surface modified WNTs were good. The COOH-MWNT will show better stability during the emulsion polymerization as compared with Pristine MWNT. In-situ emulsion polymerizations of methyl methacrylate N(MMA) and n-butyl acrylate (BA) were carried out. Aggregate size and dispersion stability of the CNTs in water phase were measured using dynamic light scattering, turbidity, UV-visible spectrophotometer, and electron microscope. In addition, thermo-mechanical properties of MWNT/polymer nanocomposites were investigated.

  • PDF

UV-Degradation Chemistry of Oriental Lacquer Coating Containing Hindered Amine Light Stabilizer

  • Hong, Jin Hu;Park, Mi Yeong;Kim, Hyeon Gyeong;Choe, Jeong O
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.61-64
    • /
    • 2000
  • FT-IR/ATR analysis shows that the oriental lacquer coating network degrades mostly in the unsaturated side chain. The rate of increase in carbonyl intensity (a measure of photodegradation) during the accelerated weathering test was substantially different for the unstabilized and stabilized samples; adding 2 wt% HALS into the oriental lacquer formulation enhanced photostabilization up to three times. Weight loss measurements, another indication of photodegradation, and SEM analysis support this conclusion. Despite the presence of the photo-stabilizer, the other properties of the lacquer were not significantly affected. In particular, the curing behavior of purified lacquer (PL) and HALS-stabilized samples is similar, although the in-situ DETA analysis showed that addition of HALS can slightly retard the cure reaction rate in oriental lacquer coating. It is hypothesized that this cure retardation may be related to the salt formation between HALS and acid of oriental lacquer.

Study on the Oxidative Polymerization of EDOT Induced by Graphene Oxide (산화 그래핀에 의한 EDOT의 산화중합에 관한 연구)

  • Kim, Min Chae;Park, Min Ui;Park, No Il;Lee, Seul Bi;Lee, Seong Min;Yang, So Yeon;Choi, Jong Hyuk;Chung, Dae-won
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.45-49
    • /
    • 2016
  • In the presence of poly(4-styrene sulfonate) (PSS) and excess amount of graphene oxide (GO), we conducted in-situ polymerization of 3,4-ethylenedioxythiophene (EDOT) without an oxidant. XPS and IR spectroscopies of the product (GO-P) showed that PEDOT/PSS was successfully synthesized by oxidative polymerization of EDOT and hybridized with GO. GO-P displayed a stable aqueous suspension, however, the high content (42%) of GO in GO-P diminished electrical conductivity down to $15S{\cdot}m^{-1}$. Annealing of GO-P films at $200^{\circ}C$ for 8 hr induced partial reduction of GO and finally enhanced electrical conductivity up to $212S{\cdot}m^{-1}$.

A study on nano-scale friction of hydrogenated amorphous carbon for application in MEMS (MEMS 적용을 위한 비정질 상 탄소박막의 나노 스케일 마찰력 특성연구)

  • 고명균;박종완
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1211-1214
    • /
    • 2003
  • The film is prepared by electron cyclotron resonance chemical vapor deposition (ECRCVD) employing CH$_4$ and H$_2$ gases. It is deposited by the control of microwave plasma power, gas flow ratio, deposition pressure, and In-situ thermal treatment temperature. The structure of a-C:H (hydrogenated amorphous carbon) thin film is analysed by FT-IR spectroscopy. The fraction sp$^3$ versus sp$^2$ bonding is very important to clear up the surface and interrace of a-C:H film properties such as nano-scale friction behavior. The sp$^3$ versus sp$^2$ bonding of a-C:H thin film is dependent on the deposition conditions, therefore. nano-scale friction behavior is dependent on the deposition conditions.

  • PDF