DOI QR코드

DOI QR Code

Study on Fabrication and Thermal Properties of the ABS/silicate Composites

ABS/실리케이트 복합체의 제조 및 열적특성 연구

  • Youn, Lee-Seol (Major in Polymer Science & Engineering, Kongju National University) ;
  • Kim, Youn-Cheol (Major in Polymer Science & Engineering, Kongju National University)
  • 윤이슬 (공주대학교 고분자공학전공) ;
  • 김연철 (공주대학교 고분자공학전공)
  • Published : 2011.06.30

Abstract

ABS/silicate composites with different clay types and compositions were prepared by in situ emulsion polymerization. The chemical structure of ABS was confirmed by the change of C-H stretching peak(near 3000 $cm^{-1}$) in fourier transform-infrared(FT-IR) spectrum. The thermal properties of the ABS/silicate composites were investigated by differential scanning calorimetry(DSC) and thermogravimetric analyzer(TGA). There was no distinct change in glass transition temperature of the ABS/silicate composites with different clay types. TGA curve indicates a dramatic increase in degradation temperature in case of ABS/20A composite with 3 wt% 20A. The silicate dispersion in the composites was measured by X-ray diffraction(XRD). The silicate dispersion in ABS/20A composites depended on the 20A composition. XRD results showed that the diffraction peak of the ABS/20A composite appeared when the content of 20A was higher than 5 wt%.

ABS/실리케이트 복합체를 clay의 종류 및 함량을 변화시키며 에멀젼 중합을 이용하여 제조하였다. ABS의 화학구조는 적외선분광기(FT-IR)를 이용하여 이중결합 C-H 신축진동 피크(3000 $cm^{-1}$ 근처)의 변화를 통해 확인하였다. ABS/실리케이트 복합체의 열적특성은 시차주사열용량분석기(DSC) 와 열중량분석기(TGA)를 이용하여 관찰하였다. Clay의 종류에 따른 ABS의 유리전이온도에는 큰 변화가 나타나지 않음을 알 수 있었다. TGA에 의한 분해온도는 20A의 함량이 3 wt%인 ABS/20A 복합체에서 가장 높은 값을 나타내었다. 복합체의 실리케이트 분산정도는 X-선회절(XRD)법을 이용하여 측정하였다. ABS/20A 복합체의 실리케이트 분산은 20A 함량에 의존하였고, 함량이 5 wt% 이상 첨가되었을 때 20A의 회절 피크가 나타나는 것을 확인하였다.

Keywords

References

  1. Nam, P. H., Maiti, P., Okamoto, M., Kotaka, T., Hasegawa, N. and Usuki, A., "A Hierarchical Structure and Properties of Intercalated Polypropylene/clay Nanocomposites," Polymer, 42, 9633-9640(2001). https://doi.org/10.1016/S0032-3861(01)00512-2
  2. Zheng, L., Farris, R. J. and Coughlin, E. B., "Novel Polyofefin Nanocomposites: Synthesis and Characterizations of Metallocenecatalyzed Polyolefin Polyhedral Oligomeric Silsesquioxane Copolymers," Macromolecules, 34, 8034-8039(2001). https://doi.org/10.1021/ma0110094
  3. Liu, X. and Wu, Q., "PP/clay Nanocomposites Prepared by Grafting- melt Intercalation," Polymer, 42, 10013-10019(2001). https://doi.org/10.1016/S0032-3861(01)00561-4
  4. Lele, A., Mackley, M., Galgali, G. and Ramesh, C., "In Situ Rheox- ray Investigation of Flow-induced Orientation in Layered Silicate- syndiotatic Polypropylene Nanocomposite melt, " J. Rheol., 46, 1091-1110(2002) https://doi.org/10.1122/1.1498284
  5. Li, J., Zhou, C. and Gang, W., "Study on Nonisothermal Crystallization of Maleic Anhydride Grafted Polypropylene/montmorillonite Nanocomposite," Polym. Test., 22, 217-223(2003). https://doi.org/10.1016/S0142-9418(02)00085-5
  6. Kim, Y. C., "Effect of Maleated Polyethylene on the Crystallization Behavior of LLDPE/clay Nanocomposites," Polym. J., 38, 250-256(2006). https://doi.org/10.1295/polymj.38.250
  7. Cho, M. S. and Lee, Y. K., "Polymer Nanocomposites Using Nano Clay," Polymer(Korea), 27, 31 (2006).
  8. Choi, Y. S. and Chung, I. J., "Comprehending Polymer-Clay Nanocomposites and Their Future Works," HWAHAK KONGHAK, 46, 23-36(2008).
  9. Kulich, D. M., Kelly, P. D. and Pace, J. E., "Encyclopedia of Polymer Science and Engineering," John Wiley and Sons, New- York, 1985.
  10. Rubin, I. I., "Hand book of Plastic Materials and Technology," Wiley, New York, 1990.
  11. Noh, Y. C., Choi, S. O., Lee, J. H. and Nam, G. D., "Nickel Plating Techniques of Blend of ABS-PC Engineering Plastics", HWAHAK KONGHAK, 34, 683-693(1996).
  12. Jang, L. J., Kang, C. M. and Lee, D. C., "A New Hybrid Nanocomposite Prepared by Emulsion Copolymerization of ABS in the Presence of Clay," J. Polym. Sci.: Part B: Polym. Phys., 39, 719-727(2001). https://doi.org/10.1002/1099-0488(20010315)39:6<719::AID-POLB1046>3.0.CO;2-N
  13. Choi, Y. S., Xu, M. and Chung, I. J., "Synthesis of Exfoliated Acrylonitrile-butadiene-styrene Copolymer (ABS) Clay Nanocomposites: Role of Clay as a Colloidal Stabilizer," Polymer, 46, 531-538(2005). https://doi.org/10.1016/j.polymer.2004.09.036
  14. Modesti, M., Besco, S., Lorenzetti, A., Causin, V., Marega, C., Gilman, J. W., Fox, D. N., Trulove, P. C., De Long, H. C. and Zammarano, M., "ABS/clay Nanocomposites Obtained by a Solution Technique: Influenece of Clay Organic Modifiers," Macromolecules, 2209-2214(2007).
  15. Pourabas, B. and Raeesi, V., "Preparation of ABS/montmorillonite Nanocomposite Using a Solvent/non-solvent Method," Polymer, 46, 5533-5540(2005). https://doi.org/10.1016/j.polymer.2005.04.055
  16. Kim, J. H., Study on Synthesis of Polymer/Layered Silicate Nanocomposites using Reactive Amphiphiles and their Characterization, Ph.D thesis, KAIST, 2007.
  17. Kim, J. H., Kim, K., Kim, Y. C. and Chung, I. J., "Effect of Reactive Amphiphiles on the Silicate Dispersion and Degradation Behavior of ABS/layered Silicate Nanocomposites," Polymer J., 40, 268-273(2008). https://doi.org/10.1295/polymj.PJ2007183
  18. Wang, S., Hu, Y., Song, L., Wang, Z., Chen, Z. and Fan, W., "Preparation and Thermal Properties of ABS/montmorillonite Nanocomposite," Polymer Degradation Stability, 77, 423-426(2002). https://doi.org/10.1016/S0141-3910(02)00098-8
  19. Lim, S.-K., Hong, E.-P., Song, Y.-H., Park, B. J., Choi, H. J. and Chin, I.-J., "Preparation and Interaction Characteristics of Exfoliated ABS/Organoclay Nanocomposite," Polym. Eng. Sci., 50, 504-512(2010). https://doi.org/10.1002/pen.21551

Cited by

  1. A Study on Mechanical Properties of Composite of Silica Aerogel and pulps vol.52, pp.3, 2014, https://doi.org/10.9713/kcer.2014.52.3.335