• Title/Summary/Keyword: Impregnation rate

Search Result 104, Processing Time 0.026 seconds

Properties of Woodceramics Made from Thinned Logs(I) - Effect of Resin Impregnation Rate and Burning Temperature - (간벌재로 제조된 우드세라믹의 성질(I) - 수지 함침율 및 소성온도의 영향 -)

  • Oh, Seung-Won;Piao, Jin-Ji
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.73-79
    • /
    • 2004
  • Research investigated the variation of density, weight loss and dimensional decreasing rate, heat conduction rate by the resin impregnation rate and burning temperature of woodceramics, which were formed by impregnation rate of 40~80% and burning temperature of 600~1500℃ with sawdust board impregnated with phenolic resin made from thinned logs of pinus densiflora, Larix kaemferi and pinus koraiensis. As the resin impregnation rate and the burning temperature increased, the density increased, however, as the burning temperature increased to at 1200℃ or more, the density decreased. The more the resin impregnation rate increased, the more the decreasing rate of weight and size decreased; the more the burning temperature increased, the more the decreasing rate of weight and size increased. When the resin impregnation rate was high, the heat conduction (mm/sec) was superior.

Mechanical Properties and Density Profile of Ceramics Manufactured from a Board Mixed with Sawdust and Mandarin Peels

  • Jung-Woo HWANG;Seung-Won OH
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.98-108
    • /
    • 2023
  • In this study, the boards were manufactured according to the mandarin peels addition rate using sawdust and mandarin orange peel. After that, the mechanical properties and density profile of ceramics prepared by conditions through resin impregnation process and carbonization process were investigated. The bending and compression strengths of ceramics tended to increase as the resin impregnation rate increased. When the resin impregnation rate was 70%, the highest values were 8.58 MPa and 14.77 MPa, respectively. Also, the mechanical properties of ceramics according to carbonization temperature showed the highest values at 1,200℃ for bending strength of 11.09 MPa and compression strength of 17.20 MPa. The bending strength and compression strength according to the mandarin peels addition rate showed the highest values at 8.62 MPa and 14.16 MPa, respectively, when the mandarin orange peel addition rate was 5%. The mechanical properties tended to decrease when the addition rate of mandarin orange was increased. The density profile of ceramics showed a similar tendency to the mechanical properties. It can be seen that the density distribution from the surface layer to the center layer is more uniform as the resin impregnation rate and carbonization temperature increase and the mandarin peels addition rate decreases.

Change in Surface Temperature of Woodceramics Manufactured by Sawdust Boards - Effect of the Rate of Resin Impregnation and Burning Temperature - (톱밥보드로 제조된 우드세라믹의 표면온도 변화 - 수지 함침율과 소성온도의 영향 -)

  • 오승원;박금희;변희섭
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.1
    • /
    • pp.24-29
    • /
    • 2003
  • Using woodceramics made from sawdust board of Larix leptolepis thinning logs, change in surface temperature were investigated, by the rate of resin impregnation and burning temperature. As the surface temperature of silicon rubber heater was going up, that of woodceramics also increase rapidly. Woodceramics made from under the condition of the rate of resin impregnation 70-80% and burning temperature 800-$1000^{\circ}C$, were higher than that of surface temperature. Also, it was found that woodceramics maintained heat for a long time because the descending velocity of their surface temperature was lower than that of the heater.

  • PDF

Resin Impregnation of Sawdust Board for Making Woodceramics(II) - Effect of Density and Addition Rate of Phenol Formaldehyde Resin - (우드세라믹 제조용 톱밥보드의 수지함침(II) - 밀도 및 페놀수지 첨가량의 영향 -)

  • Oh, Seung Won;Byeon, Hee Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.15-22
    • /
    • 2003
  • This study was carried out to investigate the properties of sawdust board impregnated with phenol resin according to the density and resin content of board. The sawdust board were manufactured to target densities of 0.4, 0.5, 0.6, 0.7 g/cm3 and resin content of 5, 10, 15, 20% made from Pinus densiflora S. et Z., Larix. kaemferi C. and Pinus koraiensis S. et Z. The impregnation process were executed in two ways, the application of vacuum pressure then followed by atmospheric pressure, and the application of vacuum pressure with ultrasonic vibration then followed by atmospheric pressure. The density of impregnated sawdust board increased as density and resin content of sawdust board increased, but impregnation rate decreased. The density, impregnation rate, bending strength and brinell hardness of sawdust board in impregnated vacuum pressure with ultrasonic vibration then nonpressure were higher than those of vacuum pressure then nonpressure. In this results, the impregnation rate is increased in vacuum pressure with ultrasonic vibration then nonpressure, it has affected the properties of sawdust board impregnated with phenol resin.

A Study on the Mechanical Properties of Hanji for Application of Automobile Fuel Filter (자동차 연료필터 적용을 위한 한지의 물리적 특성 연구)

  • Kim, Hyun-Chel;Jeon, Cheol
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2008.04a
    • /
    • pp.191-197
    • /
    • 2008
  • In this study, as a fuel filter for automobiles, base paper which can filtrate the polluted particles must satisfy with the standards of each vehicle. and a filter of impregnation paper made that combining the base paper with the resin. Therefore, They were wanted to found out the factors that affect base paper and impregnation paper according to content of HPZ, Mulberry pulp(MP), Laub holze bleached kraft pulp(LBKP). The most important things we wanted to find out in base paper and impregnation paper test were weight, thickness, air permeability, burst and tensile strength, maximum pore size and mean pore size, stiffness. we wanted to measure a rate of change of these condition by adjusting a rate of mixing for HPZ, MP and LBKP. Moreover, It suited for an impregnation paper mixed with a rate of mulberry pulp 20%, HPZ 40% and LBKP 40%. Used resins in this study was Phenol, Acryl, PVAc. And as every resins, sample was divided into existence and nothing of embossing. as a fuel filter for automobiles, It was appeared that the suitable condition of base paper was a rate of mixing for HPZ(40%), MP(20%) and LBKP(40%).

  • PDF

A study on carbon composite fabrication using injection/compression molding and insert-over molding (사출/압축 공정과 인서트 오버몰딩을 이용한 탄소복합소재 성형에 대한 연구)

  • Jeong, Eui-Chul;Yoon, Kyung-hwan;Hong, Seok-Kwan;Lee, Sang-Yong;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.11-16
    • /
    • 2020
  • In this study, forming of carbon composite parts was performed using an injection/compression molding process. An impregnation of matrix is determined by ability of wet and flow rate between the matrix and reinforcement. The flow rate of matrix passing through the reinforcements is a function of permeability of reinforcement, a viscosity of matrix and pressure gradient on molding, and the viscosity of the matrix depends on the mold temperature, molding pressure and shear strain of matrix. Therefore, compression molding experiment was conducted using a heating mold in order to confirm the possibility of matrix impregnation. The impregnation of the matrix through the porosities between the woven yarns was confirmed by the cross-sectional SEM image of compression molded parts. An injection molding process was also performed at a short cycle time, high molding pressure and low mold temperature than those of compression experiment conditions. Deterioration of impregnation on the surface of molded parts were caused by these injection conditions and it could be the reason of decreasing the maximum tensile strength. In order to improve impregnation of matrix on the surface, injection/compression molding and insert-over molding were applied. As a result of applying injection/compression molding and insert-over molding, it was shown that the improvement of impregnation on the surface and the maximum tensile strength was increased about 2.8 times than the virgin matrix.

Manufacturing Characteristics of Wood ceramics from Thinned Small Logs (I) - Resin Impregnation Rate and Bending Strength -

  • Oh, Seung-Won;Hirose, Takashi;Okabe, Toshihiro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.51-55
    • /
    • 2000
  • The woodceramics which are new porous carbon materials were obtained by carbonizing from thinned small log of Aomori HIBA (Thujopsis dolabrata S. et. Z. var. hondae M.) impregnated with phenol resin in a vacuum furnace. During the carbonization process, the resin changes into glassy carbon, which has superior property. The resin impregnation rate and bending strength depend on the types of board and density. In this paper, the manufacturing method of woodceramics made from thinned small logs of Aomori HIBA was introduced and some properties were examined.

  • PDF

The Manufacture of High-Density Woodceramic through the Secondary Carbonization

  • Oh, Seung Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.105-110
    • /
    • 2013
  • A repeated impregnation and carbonization process was performed to prepare high-density woodceramics using MDF. The physical properties were estimated to further confirm morphologically structurally occurred changes of one-time and two-time phenolic resin treated and carbonized woodceramics. As compare one-time and two-time carbonized woodceramics, the increasing rate of weight and density declined after second carbonization as the resin impregnation ratio grew higher, and when the resin impregnation ratio was 40 percent, the weight and density of the second carbonization increased more than in the first step by 20.5% and 33.9% respectively which were the highest rates.

Evaluation of Micro-defects and Air Tightness of Al Die-casting by Impregnation of Organic Solvent (유기용제 함침법을 통한 알루미늄 다이캐스팅의 미세결함 및 기밀성 평가)

  • Lee, Jin-Wook;Cho, Chang-hyun;Kim, Sung-Gye;Ko, Young-Gun;Kim, Dong-Ju
    • Journal of Korea Foundry Society
    • /
    • v.42 no.4
    • /
    • pp.218-225
    • /
    • 2022
  • For hydrogen-vehicle applications (air pressure control valve housing, APCVH), an investigation was conducted to determine how micro-defects in a high- pressure die-casted Al alloy (industrial code: ALDC12) could be controlled by means of a post-treatment using an organic-based impregnation solution in order to improve the air- tightness of the die-casted Al sample. Two different impregnation solutions were proposed and its test results were compared to a imported product from Japan with respect to the processing variables used. A structural investigation of the components under study was conducted by means of computer tomography and 3D X-ray micro-CT. These observations revealed that the use of the impregnation treatment to seal micro-defects led to highly significant and beneficial changes which were attributed mainly to interconnections among inherent micro-pores. A leak test after impregnation revealed that the performance improvement rate of the die-casted Al sample was ~70% for INNO-01. Therefore, the developed impregnation solutions offer an effective strategy to control the micro-defects found in various vehicle parts via die-casting.

Improvement of $CO_2$Decomposition by Impregnating Noble Metals to Nano-size (Ni, Zn)-ferrites (귀금속 첨가에 의한 나노 (Ni, Zn)-페라이트의 $CO_2$분해 향상)

  • Kim, Jeong-Sik;An, Jeong-Ryul;Gang, Gye-Myeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.846-850
    • /
    • 2001
  • In the present study, nano-size powders of ternary ferrites, $Ni_{0.5}Zn_{0.5}Fe_2O_4$, as the potential catalysts of $CO_2$decomposition, were prepared by the wet processing of hydrothermal synthesis and coprecipitation method, and the catalyzing effects of impregnation of the noble metals, Pt and Pd, onto $Ni_{0.5}Zn_{0.5}Fe_2O_4$for the $CO_2$decomposition were investigated. XRD results of the synthesized ferrites showed a typical spinel structure of ferrite and the particle size was very small as about 6~10 nm. BET surface area of the ternary ferrites was not affected by the impregnation of Pt and Pd. The reactivity of the $CO_2$decomposition to carbon was improved by the impregnation of the noble metals of Pd and Pt. The effect of Pd-impregnation on the $CO_2$decomposition rate was higher than Pt-impregnation.

  • PDF