• Title/Summary/Keyword: Imaging Geometry

Search Result 153, Processing Time 0.031 seconds

MEDICAL IMAGE ANALYSIS USING HIGH ANGULAR RESOLUTION DIFFUSION IMAGING OF SIXTH ORDER TENSOR

  • K.S. DEEPAK;S.T. AVEESH
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.3
    • /
    • pp.603-613
    • /
    • 2023
  • In this paper, the concept of geodesic centered tractography is explored for diffusion tensor imaging (DTI). In DTI, where geodesics has been tracked and the inverse of the fourth-order diffusion tensor is inured to determine the diversity. Specifically, we investigated geodesic tractography technique for High Angular Resolution Diffusion Imaging (HARDI). Riemannian geometry can be extended to a direction-dependent metric using Finsler geometry. Euler Lagrange geodesic calculations have been derived by Finsler geometry, which is expressed as HARDI in sixth order tensor.

A Model of a Simplified Mammography Geometry for Breast Cancer Imaging with EIT (전기임피던스 단층촬영법을 위한 단순화된 매모그래피 구조의 모델)

  • Choi, Myoung-Hwan
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.221-226
    • /
    • 2006
  • Electrical impedance tomography (EIT) is a technique for determining the electrical conductivity and permittivity distribution within the interior of a body from measurements made on its surface. One recent application area of the EIT is the detection of breast cancer by imaging the conductivity and permittivity distribution inside the breast. The present "gold standard" for breast cancer detection is X-ray mammography, and it is desirable that EIT and X-ray mammography use the same geometry. This paper presents a forward model of a simplified mammography geometry for EIT imaging. The mammography geometry is modeled as a rectangular box with electrode arrays on the top and bottom planes. A forward model for the electrical impedance imaging problem is derived for a homogeneous conductivity distribution and Validated by experiment using a phantom tank.

  • PDF

An Efficient Rectification Algorithm for Spaceborne SAR Imagery Using Polynomial Model

  • Kim, Man-Jo
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.363-370
    • /
    • 2003
  • This paper describes a rectification procedure that relies on a polynomial model derived from the imaging geometry without loss of accuracy. By using polynomial model, one can effectively eliminate the iterative process to find an image pixel corresponding to each output grid point. With the imaging geometry and ephemeris data, a geo-location polynomial can be constructed from grid points that are produced by solving three equations simultaneously. And, in order to correct the local distortions induced by the geometry and terrain height, a distortion model has been incorporated in the procedure, which is a function of incidence angle and height at each pixel position. With this function, it is straightforward to calculate the pixel displacement due to distortions and then pixels are assigned to the output grid by re-sampling the displaced pixels. Most of the necessary information for the construction of polynomial model is available in the leader file and some can be derived from others. For validation, sample images of ERS-l PRI and Radarsat-l SGF have been processed by the proposed method and evaluated against ground truth acquired from 1:25,000 topography maps.

An Algorithm for Computing Eigen Current of Forward Model of Mammography Geometry for EIT (매모그램 구조의 전기저항 영상법에서 정방향 모델의 고유전류 계산 알고리즘)

  • Choi, Myoung Hwan
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.91-96
    • /
    • 2007
  • Electrical impedance tomography (EIT) is a technique for determining the electrical conductivity and permittivity distribution within the interior of a body from measurements made on its surface. One recent application area of the EIT is the detection of breast cancer by imaging the conductivity and permittivity distribution inside the breast. The present standard for breast cancer detection is X-ray mammography, and it is desirable that EIT and X-ray mammography use the same geometry. A forward model of a simplified mammography geometry for EIT imaging was proposed earlier. In this paper, we propose an iterative algorithm for computing the current pattern that will be applied to the electrodes. The current pattern applied to the electrodes influences the voltages measured on the electrodes. Since the measured voltage data is going to be used in the impedance imaging computation, it is desirable to apply currents that result in the largest possible voltage signal. We compute the eigenfunctions for a homogenous medium that will be applied as current patterns to the electrodes. The algorithm for the computation of the eigenfunctions is presented. The convergence of the algorithm is shown by computing the eigencurrent of the simplified mammography geometry.

  • PDF

Numerical Study on the Blood Flow in the Abdominal Artery with Real Geometry (실제 형상을 통한 복부대동맥의 혈류 유동에 대한 수치적 연구)

  • Kang, Han-Young;Kim, Min-Cheol;Hong, Yi-Song;Lee, Chong-Sun;Lee, Jong-Min;Kim, Charn-Jung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.747-752
    • /
    • 2003
  • Many clinical studies have suggested that the blood flow in ideal geometry is involved in the development of atherosclerosis. This study simulated blood flow in the abdominal artery with real geometry to investigate MWSS(mean wall shear stress), AWSS(amplitude of wall shear stress) and OSI(oscillator shear index). The calculation grid for the real geometry was constructed by extracting the surface of arterial wall from CT(Computed Tomography) or MRI(Magnetic Resonance Imaging) sheets called as DICOM (Digital Imaging and Communications in Medicines). The calculated MWSS, AWSS and OSI are much different from those of ideal geometry calculation. The MWSS increased while the AWSS decreased. Many shear forces are related to shapes of gradient. This paper will give clinical datum where the MWSS, AWSS and OSI are strong or weak. The hemodynamic analysis based on real geometry can provide surgeons with more reliable information about the effect of blood flow.

  • PDF

Terahertz Nondestructive Time-of-flight Imaging with a Large Depth Range

  • Kim, Hwan Sik;Kim, Jangsun;Ahn, Yeong Hwan
    • Current Optics and Photonics
    • /
    • v.6 no.6
    • /
    • pp.619-626
    • /
    • 2022
  • In this study, we develop a three-dimensional (3D) terahertz time-of-flight (THz-TOF) imaging technique with a large depth range, based on asynchronous optical sampling (ASOPS) methods. THz-TOF imaging with the ASOPS technique enables rapid scanning with a time-delay span of 10 ns. This means that a depth range of 1.5 m is possible in principle, whereas in practice it is limited by the focus depth determined by the optical geometry, such as the focal length of the scan lens. We characterize the spatial resolution of objects at different vertical positions with a focal length of 5 cm. The lateral resolution varies from 0.8-1.8 mm within the vertical range of 50 mm. We obtain THz-TOF images for samples with multiple reflection layers; the horizontal and vertical locations of the objects are successfully determined from the 2D cross-sectional images, or from reconstructed 3D images. For instance, we can identify metallic objects embedded in insulating enclosures having a vertical depth range greater than 30 mm. For feasible practical use, we employ the proposed technique to locate a metallic object within a thick chocolate bar, which is not accessible via conventional transmission geometry.

Imaging Method Using Isorange-IsoDoppler Contours Map in Bistatic Radar (바이스태틱 레이더에서 아이소레인지-아이소도플러 컨투어 맵을 이용한 이미징 기법)

  • Youn, Jae-Hyuk;Chung, Yong-Seek;Chung, Won-Zoo;Jeong, Myung-Deuk;Yang, Hoon-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.2
    • /
    • pp.255-258
    • /
    • 2014
  • Imaging in bistatic radar has been known a more difficult task than that in monostatic radar. It is because the behavior of the bistatic range and the bistatic Doppler due to the motion of a transmitter and a receiver is so random that the compensation procedure, which we call an imaging algorithm, is quite complicated. This paper presents a bistatic radar imaging algorithm that can be used in some specific bistatic radar geometry. We show this geometry can present rectangular-like resolution cell on isorange-isoDoppler contours map. We also present the associated resolution and simulation results.

The Effect of Network Geometry on Three- Dimensional Analysis in Close-Range Photogrammetry (근접사진측량의 망구성이 삼차원 위치해석에 미치는 영향)

  • 이진덕;강준묵
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.8 no.1
    • /
    • pp.15-22
    • /
    • 1990
  • The purpose of this study is to suggest possibility to analyze the three-dimensional positions of the whole surface of an object simultaneously and precisely by close-range photogrammetry. For this purpose, the geometry of network, namely imaging geometry and control configuration etc was considered, and then the whole surface of the object was analyzed by bundle adjustment through forma. lion of strip and block with which cover the whole surface of the object. As a result, we were able to prove possibility of the whole surface analysis of an object and to extract characteristics of accuracies in accordance with the number and configuration of control points. Also as desirable accuracies were able to be acquired even by employing configuration of only a few control point stationed on a limited surface, it is expected that the difficulties of control surveying will be able to be reduced considerably.

  • PDF

Image and Observer Regions in 3D Displays

  • Saveljev, Vladimir
    • Journal of Information Display
    • /
    • v.11 no.2
    • /
    • pp.68-75
    • /
    • 2010
  • The relation between light sources and screen cells is considered part of the theoretical model of an autostereoscopic 3D display. The geometry of the image and observer regions is presented, including the cases of single and multiple regions. The characteristic function is introduced. Formulas for the geometric parameters are obtained, including areas and angles. Special attention is drawn to the screen location. The method of transforming the formulas between regions is stated. For multiple regions, geometric dissimilarity was found. This allows the model to be applied in finding the geometric characteristics of multiview and integral-imaging 3D displays.

Assessment of Right Ventricular Function in Pulmonary Hypertension with Multimodality Imaging

  • Seo, Hye Sun;Lee, Heon
    • Journal of Cardiovascular Imaging
    • /
    • v.26 no.4
    • /
    • pp.189-200
    • /
    • 2018
  • Pulmonary hypertension (PH) is defined as resting mean pulmonary artery pressure ${\geq}25mmHg$ and is caused by multiple etiologies including heart, lung or other systemic diseases. Evaluation of right ventricular (RV) function in PH is very important to plan treatment and determine prognosis. However, quantification of volume and function of the RV remains difficult due to complicated RV geometry. A number of imaging tools has been utilized to diagnose PH and assess RV function. Each imaging technique including conventional echocardiography, three-dimensional echocardiography, strain echocardiography, computed tomography and cardiac magnetic resonance imaging has-advantages and limitations and can provide unique information. In this article, we provide a comprehensive review of the utility, advantages and shortcomings of the multimodality imaging used to evaluate patients with PH.