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MEDICAL IMAGE ANALYSIS USING HIGH ANGULAR

RESOLUTION DIFFUSION IMAGING OF SIXTH ORDER

TENSOR

K.S. DEEPAK AND S.T. AVEESH∗

Abstract. In this paper, the concept of geodesic centered tractography is
explored for diffusion tensor imaging (DTI). In DTI, where geodesics has

been tracked and the inverse of the fourth-order diffusion tensor is inured to

determine the diversity. Specifically, we investigated geodesic tractography
technique for High Angular Resolution Diffusion Imaging (HARDI). Rie-

mannian geometry can be extended to a direction-dependent metric using

Finsler geometry. Euler Lagrange geodesic calculations have been derived
by Finsler geometry, which is expressed as HARDI in sixth order tensor.
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1. Introduction

Medical images considered in this work are Diffusion Tensor Imaging (DTI)
and High Angular Resolution Diffusion Imaging (HARDI) of brain tissue [1,2].
DTI is a non-invasive, magnetic resonance imaging method which evaluates dis-
tribution of fluid molecules. A DTI method of magnetic resonance imaging
(MRI) evaluates the directional anisotropy of local fluid distribution to map
out the formation of nerve tissue in a completely insane way. However, in the
areas of complex fiber formation, DTI has some limitations. i.e, in crossing
strands do not adequately reflect the distribution area process due to incorrect
speculation about the lower distribution area. To overcome these constraints,
HARDI [6,8,10] has been introduced, which can better convey the distribution
area process.

HARDI image consists of three-dimensional voxels, which are similar to two-
dimensional images that combine the same pixels. In a two-dimensional digital
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image, each pixel contains information about the colour and light, where as in
the HARDI, each voxels image contains information about the water variation
profile [11,12]. The ventricles filled with cerebrospinal fluid functions as storage
and support to the brain, during which the defective profiles look like circles as
water molecules disperse freely on all sides and it’s because in the optic nerve,
there are large numbers of nerve connections. In visual cortex, the distribution
profiles look like long ellipses, because the molecules are forced to disperse near
the nerve bundle, which gives the behavioural collection of water molecules [2,3].

Diffusion orientation distribution function (ODF) [1,2,3,4,5,7] is a very im-
portant feature for capturing the angular content of the propagator. A spherical
ODF, depicted as a sphere on a unit sphere, represents the diffusion propagator’s
radial integral in spherical coordinates, and has many variants that are crucial
to a number of tractography techniques. The diffusion tensor is an example of a
fundamental spherical function that cannot be described by an ellipsoid, but the
ODF is a sphere-distributed discrete function. As a result, it can be displayed
as a sphere with a colour map, or as a sphere mesh where each vertex has been
scaled according to the value of the ODF. These glyphs serve like frequently
used visual representations of the ODF and any diffusion signal on the sphere,
as well as angular functions.

Neda Sepasian [1,3,7,9] introduces a geodesic equation for HARDI using trac-
tography. Geodesics have been traced using the converse of the second-order
diffusion tensor in DTI in order to outline manifold. In order to resolve the
complicated fiber populations within a voxel, HARDI models were developed,
in which fourth order tensors represent the fiber populations well. Moreover,
Finsler geometry is used to produce Euler-Lagrange geodesic equations to assess
the other geodesic tractography algorithms, generating the multi-valued numer-
ical model of the geodesic calculations.

In this paper, HRDI will be evaluated using the sixth order tensor of the
Riemann-Finsler Geodesic Tractography. In this model, the diffusion profile
in the voxel is described by a mode of action in the unit sphere. By using
inversion theory [1,2,5], the components of the higher order tensor are reduced
from 729 to 28. This numerical model provides the conversion of the spherical
harmonic presentation of the ODF into a higher order tensor (HOT) delineation
and additional higher order tensor coefficients.

2. Geodesic Equation

Geodesic curve of Finsler metric, which reduces the distance between end-points.
Here deliberate a bounded curve ∁ as the variable, x = ξ(t), a≤ t ≤ b, where t
represents the arc-length. The curve ∁ is specified as,

J(ξ) =

∫ b

a

F (ξ (t) , ˙ξ(t))dt (1)
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Where ˙ξ(t) = d(ξ(t))
dt . To minimize the length function, it has been outlined that

the required condition (1) must be Euler-Lagrange equations. [11]

d

dt

(
∂F

∂yα

)
− ∂F

∂xα
= 0 (2)

Where yα = ẋα. The geodesic equations will be derived from the Equation (2).
Using the chain rule gives as,

d

dt

(
∂F 2

∂yα

)
− ∂F 2

∂xα
=

1

F

dF

dt

∂F 2

∂yα
(3)

Using that dF
dt = 0 (arc length parameterization), the above equations implies

to
d

dt

(
∂F 2

∂yα

)
− ∂F 2

∂xα
= 0 (4)

Applying the chain rule again and substituting of gαβ=
1
2

∂2F 2

∂yα∂yβ yields

2gαβ ẍ
β +

∂2F 2

∂yα∂xβ
yβ − ∂F 2

∂xα
= 0 (5)

Multiplying Eq. (5) with the inverse gγα gives

ẍα + 2Gα(x, ẋ) = 0 (6)

Where Gα are the geodesic coefficients defined by

Gα(x, y) =
1

4
gαβ (x, y)

(
∂2F 2(x, y)

∂yβ∂xγ
yγ − ∂2F 2(x, y)

∂xβ

)
(7)

It is often useful to write the geodesic from the point of view of computational,
for eq (6), as substitute. To serve this here made it to be revealed the Christoffel
symbols of second kind given as

γα
βγ(x, y) =

1

2
gαβ (x, y) (

∂gβk
∂xγ

+
∂gγk
∂xβ

− ∂gβγ
∂xk

) (8)

In contrast to the Riemannian case, both space and direction are functions γα
βγ .

To reform the geodesic equations, we have to rewrite Gα in concern to the formal
Christoffel symbols [4] which has been stated by the following result:
Proposition 1. Geodesic coefficients Gα are defined in equation (7), and their
Christoffel symbols γα

βγ are defined in equation (8) as follows:

2Gα = γα
βγy

βyγ . (9)

As a result, derivatives of F are interchanged by derivatives of gαβ we prove prior
to equation (9) we have to have two lemmas. The first is of Cartan’s connection
Cαβγ(x,y) is defined as:

Cαβγ =
1

4

∂3F 2(x, y)

∂yαyβyγ
.
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Lemma 1. The Cartan tensor Cαβγ(x, y) gratifies

Cαβγ (x, y) yγ= 0. (10)

Proof. The Riemann-Finsler metric gαβ(x, y) receives the below mentioning
homogeneous property from the fixed property F(x, λ y) = λF(x, y) for all λ>0:

gαβ(x, λy) = gαβ(x, y).

Differentiation concerning to λ and while setting λ = 1 gives

∂gαβ(x, y)

∂yγ
yγ = 0.

As a result, the Cartan tensor satisfies

Cαβγ(x, y)y
γ= 1

2
∂gαβ(x,y)

∂yγ yγ=0.

Lemma 2. In Riemann-Finsler metric tensor, equations hold

gαβy
αyβ = F 2 (11)

∂

∂yγ
(
gαβy

αyβ
)
= 2gγαy

α (12)

Proof: The following equations can be derived from the homogeneity of F,

∂F

∂yα
yα = F,

∂3F

∂yα∂yβ
yβ = 0.

First the relation (11) is proved by using definition gαβ=
1
2

∂2F 2

∂yα∂yβ it’s seen that

gαβy
αyβ =

1

2

∂

∂yα

(
∂F 2

∂yβ

)
yαyβ

=
∂

∂yα

(
F

∂F

∂yβ

)
yαyβ

=

(
∂F

∂yα
∂F

∂yβ
+ F

∂2F 2

∂yα∂xβ

)
yαyβ

=
∂F

∂yγ
∂F

∂yβ
yαyβ = F 2.

Using the above equation (11), we show equation (12) by having

∂

∂yγ
(
gαβy

αyβ
)
=

∂gαβ
∂yγ

yαyβ + gαβδαγy
β + gαβy

αδβγ

= 2Cαβγy
αyβ + 2gγβy

β .

Proof of Proposition 1 As a result of the above lemmas, the next derivation
gives us to express Gα in relations of Christolfel signs, i.e.,

2Gα =
1

2
gαβ

(
∂

∂xγ

∂F 2

∂yβ
yγ − ∂F 2

∂xβ

)
=

1

2
gαβ

(
∂

∂xγ

∂

∂yβ
(
gλµy

λyµyγ
)
−

∂gλµyλyµ

∂xβ

)
,
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where expression (11) is substituted for F 2. Next combining this relation with
(12), it’s obtained

2Gα =
1

2
gαβ

(
∂

∂xγ

(
2gβµy

λ
)
yγ − ∂gλµ

∂xβ
yλyµ

)
=

1

2
gαβ

(
∂gλβ
∂xµ

+
∂gµβ
∂xλ

− ∂gλµ
∂xβ

)
yλyµ.

Hence the proof of equation (9). Substituting equation (9) in (10) gives

ẍ+ Γα
βγ ẋ

β ẋγ = 0. (13)

This is another form of the geodesic equation.

3. Numerical Model

In the HARDI model, the sixth-order tensor illustration has been considered of
the Orientation Distribution Function (ODF) [1, 5, 6, 7]. Based on the trans-
formation of the basis, the ODF’s spherical harmonics representation can be
changed into a HOT representation. To calculate Finsler metrics, the circular
inversion of the ODF on each voxel must be calculated. To do this, Eq (3) on the

unit sphere for m> 28 is applied, which determines the system Y d̃=b. where

d̃ consists the coefficients; See the Table 1.
Table 1: HOT coefficients

Tensor
ele-
ment

HOT
Coeffi-
cient

Tensor
ele-
ment

HOT
Coeffi-
cient

Tensor
ele-
ment

HOT Co-
efficient

Tensor
ele-
ment

HOT
Coeffi-
cient

1 D111111 8 D333331 15 D333322 22 D111223

2 D222222 9 D333332 16 D111222 23 D111332

3 D333333 10 D111122 17 D111333 24 D222113

4 D111112 11 D111133 18 D222333 25 D222331

5 D11113 12 D222211 19 D111123 26 D333112

6 D222221 13 D222233 20 D222213 27 D333221

7 D222223 14 D333311 21 D333312 28 D112233

The icosahedron tessellation on the unit sphere has been applied to ensure uni-
form pattern orientation y on the sphere. It’s limited to the formalise ODF, so
P6(x,y) =1. To find the result to this arrangement, least squares approximation

method has been applied. The rewrite of the equation in general is as YTY d̃=
YTb.

Y =


y11y

1
1y

1
1y

1
1

y12y
1
2y

1
2y

1
2

· · ·
· · ·

y31y
3
1y

3
1y

3
1

· · ·
...

...
...

y1my1my1my1m · · · y3my3my3my3m

 , b=

 P6(x,y1)
−1

...

P6(x,ym)
−1

 . (14)
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The lower indices in y denote the gradient direction and m is the numerical
figure of gradient directions to be sampled from ODF profile; m is set as 729

components in the computations. The solution d̃ is calculated by using Cholesky
factorization method, which reduces to 28 co-efficient for the inverted ODF pro-

file. The new profile can be fitted over the sphere using the new co-efficient d̃ ;
see Fig 1

Fig. 1 ODF and its inverse using lest-squares fit (Left) and analytic inversion
(Right). (a) ODF and its inverse for a single fiber image (b) ODF its inverse for
a crossing fiber image.
Let it be introduced uγ(t):= xγ(t) for γ= 1, 2, 3, then it can be rewritten in
system (13) as,

ẋα = uα,

uα = Γα
βγu

βuγ , (15)

with the Γα
βγdefined in (15). Sepasian et al. [11] proposed a similar technique

to resolve the system of equations (22). Consider (x1(0), x2(0), x3(0) as a point
in the area and (u1(0), u2(0), u3(0)) as the preliminary path. The Runge-Kutta
method of ODE, with the fourth order explicit method, was used to calculate
the solutions to (15) using the given initial point and multiple directions and to
produce a set of geodesics linking the specified point to a set of boundary points.

It is divided regularly through grid extent h and grid points xijk= ( x1i , x
2
j , x

3
k)

= h(i,j,k) for i= 0,2,3,...,N - 1, where N is the number of grid points in each
spatial direction. For easiness, the number of grid points equal in all directions
have been taken. For each grid point, there assigned 28 coefficients of inverted
Higher Order Tensor D̃.

Based on a standard second order vital difference scheme, we have approxi-
mated gαβ( x,y) in each grid point, for example,

∂gαβ
∂x1

(
x1
i , x2

j , x3
k, y

)
≈ 1

2h

(
gαβ

(
x1
i+1 x2

j , x3
k, y

)
−gαβ

(
x1
i−1 x2

j , x3
k, y

))
.

(16)
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Second order variances are calculated when grid points are located on a bound-
ary,
∂gαβ

∂x1

(
x1
i , x2

j , x3
k, y

)
≈

1

2h

(
−3gαβ

(
x1
0x

2
j , x3

k, y
)
+4gαβ

(
x1
0x

2
j , x3

k, y
)
−gαβ

(
x1
0x

2
j , x3

k, y
))

.

(17)
Similarly, derivatives of x2 and x3 can also be computed, while keeping in mind
that these relationships depend on the argument y. ODE, however, provides
solutions that do not necessarily correspond to grid points. So, the value of a
metric and its derivatives is not defined, and the trilinear interpolation is used
where the value does not available. The initial vectors have been distributed
equally on the unit area using the various simple symmetric polyhedral. Con-
solidation of geodesics extends until the computation reaches the end point of
the domain. The initial seed points for the geodesics have been calculated as
the starting point will be set and then the fibers can be selected by selecting the
areas of interest and filtering all the geodesics passing through the two selected
areas. A geodesic is calculated until it meets one of the boundary lines, then
a line-plane intersection is performed to pinpoint the fibers that connect the
two given areas. The selected fields can be truncated with this after entering a
geodesic.

4. Finsler Metric

Higher order tensors would be developed versions of second order tensors. Mul-
tiple fiber orientations can be represented with higher order tensors. Simple,
the theory has been introduced for sixth order tensors, but can be ignorable ex-
tended to higher orders. In the HARDI model, P6(x, y) is a purpose on the unit
sphere which represents the diffusion profile. This theory has been accessible in
a common form such as P6(x, y), which can be a diffusive profile that results
from diverse HARDI modelling strategies so long as the diffusion flux increases
along with cumulative standards P6(x, y).
Using specimen data on a unit sphere, the coefficients of the sixth order tensor
have been fixed to D = D(x) to the function P6(x, y).[6], i.e.,

P 6(x, y) = Dpqrstu(x)y
pyqyrysytyu (18)

with (p, q, r, s, t, u) = 1, 2, 3, 4, 5, 6, i=1, 2, 3, 4, 5, 6, x contains the spatial co-
ordinate where y=ypyqyrysytyu=(sin θ cos ∅, sin θ sin ∅, cos θ) is the directional
vector with ∅ ∈ [0, 2π) and θ ∈ [0.π ]. Here, the coefficients Dpqrstu(x) are the
perticles of D. Einstein summation is employed in all formulas, i.e., repeated
indexes have been summed up, one for each position in the superscript and sub-
script. Tensor D satisfies the symmetry property,

Dpqrstu = Dσ(p)σ(q)σ(r)σ(s)σ(t)σ(u). (19)
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For any permutation σ, therefore the number of components can be reduced
from 729 to 28.

The DTI Riemannian method is a heuristic approach used to find the prob-
ability of a fiber extending in the system of y matches to a larger diffusivity
denoted in P6(x,y), as well as faster diffusion. Thus, the metric must be given
the shortest distance in the way where diffusion is greater. This has been at-
tained by using the metric as the converse of the diffusion tensor in DTI. Thus,
the diffusion tensor’s largest eigen value is the metric’s smallest. On the other
hand, HARDI allows for the analysis of diffusion profiles that are more complex.
This method needs to be prolonged to include Finsler metric for the purpose
of position and direction. To invert the HOT, a suitable framework needs to
be developed. A proper inversion requires certain properties to be preserved,
for the normal value of the function in the angle between two directions [3]. In
Figure 2, Astola explains the spherical inversion of a point on a surface M by
coordinate’s xM [2] .A point M’ is the inverse of a given point M with respect
to a sphere with radius r = a. This means that |xM |×|x M′ |=a2 in spherical
coordinates, where x = rer is the position vector and er is the radial unit vector.
There are two points M and M’ on the same ray through O. The figure 2 shows
the inversion maps from points,

Fig. 2 A two-dimensional illustration of spherical inversion. M’ is M’ in terms
of a circle.

within the sphere to points outside it and vice versa. As an example, when M is
outside the given sphere, |xM |> n gives,

|x M ′ |= a2

|xM | < a.

In similitude with the spherical inversion, P̃6(x, y) has been defined that is the
inverse of P6(x,y), is as follows,

P̃6(x, y) =
P6(x, y)

P6(x, y)
= Dpqrstu(x)y

pyqyrysytyu, (20)

where D is HOT that fits P̃ 6(x,y) and P 6(x, y)is the normal of HOT over the
unit sphere, i.e.,

P6(x, y)=
∫
|y|=1

P6(x, y) dy.

Astola, present the next Finsler norm for the sixth order tensors

F (x, y) =
(
P̃6(x, y)

) 1
6

. (21)
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The Finsler metric is considered by the bilinear form F=F(x,y) is as given

gαβ=
1

2

∂2F 2

∂yα∂yβ
, (22)

where α and β are used to index the components of tensor g.

As explained below, the Riemannian metric is a special case of the Finsler metric.
If F 2 (x.y) =gαβ (x)yαyβ i.e gαβ only depends on x, then,

(a) (b) (c)
Figure 3 (a) Explanation of the directional dependence of tensors gαβ (x, y). (b)

and (c) The P̃ 6(x, y) , appearing as a surface in all images.
In each image, the arrows indicate specific directions y, and the ellipsoids

represent the tensors x, y) calculated from (x, y), by fixing the direction y.

gαβ(x, y) =
1

2

∂2

∂yα∂yβ
(gαβ(x)y

αyβ) = gαβ(x). (23)

This metric is recognized as Riemannian metric. By difference, Finsler met-
ric is not lone influenced by x, but also by y. Astola has analysed the re-
quired conditions of differentiability, homogeneity, and strong convexity for (21)
found that the strong convexity criterion only applies if fourth order tensor
Dpqrstuy

pyqyrys is positive definite for every y.

Substituting (21) for the bilinear form (22), the Finsler metric tensor reads
could be made visible as,

gαβ(x, y) =
1

2

∂2F 2

∂yα∂yβ

= −4P̃6(x, y)
−5
3 (D αpqrsty

pyqyrysyt)(D βpqrsty
pyqyrysyt)

+ 5P̃6(x, y)
−2
3 (D αpqrsty

pyqyr)

(24)

In this case, the corresponding local metric can be obtained at each position and

y. Figure 3 depicts the Finsler metric’s directional dependence on a P̃ 6(x,y)
profile. Three tensors gαβ (x, y) can be derived from the same position, i.e.,
x, by altering y. The metric tensors are essential to calculate the geodesics in
Finsler geometry.
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5. Conclusion

An algorithm for tractography of HARDI data has been proposed. It is based
on the calculation of geodesics impression in the Finsler metric, which is an
extension of the Riemannian metric. The Finsler metric has been defined as
the function of position, and for its direction, HARDI information has been ex-
tracted from each voxel. This includes the diffusion profile within a voxel which
is described by the function in the unit sphere. By applying inversion theory,
reduce the components of the higher order tensor from 729 to 28. The numer-
ical model provides the transformation of the spherical harmonic image of the
ODF into a higher order tensor image and higher order tensor coefficients. A
heuristic choice has been made for the mapping of HARDI data to the Finsler
metric. The theory that suggests a possible method of extracting crossing fiber
has been presented.
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