DOI QR코드

DOI QR Code

Terahertz Nondestructive Time-of-flight Imaging with a Large Depth Range

  • Kim, Hwan Sik (Department of Physics and Department of Energy Systems Research, Ajou University) ;
  • Kim, Jangsun (Panoptics Corp.) ;
  • Ahn, Yeong Hwan (Department of Physics and Department of Energy Systems Research, Ajou University)
  • Received : 2022.08.29
  • Accepted : 2022.11.16
  • Published : 2022.12.25

Abstract

In this study, we develop a three-dimensional (3D) terahertz time-of-flight (THz-TOF) imaging technique with a large depth range, based on asynchronous optical sampling (ASOPS) methods. THz-TOF imaging with the ASOPS technique enables rapid scanning with a time-delay span of 10 ns. This means that a depth range of 1.5 m is possible in principle, whereas in practice it is limited by the focus depth determined by the optical geometry, such as the focal length of the scan lens. We characterize the spatial resolution of objects at different vertical positions with a focal length of 5 cm. The lateral resolution varies from 0.8-1.8 mm within the vertical range of 50 mm. We obtain THz-TOF images for samples with multiple reflection layers; the horizontal and vertical locations of the objects are successfully determined from the 2D cross-sectional images, or from reconstructed 3D images. For instance, we can identify metallic objects embedded in insulating enclosures having a vertical depth range greater than 30 mm. For feasible practical use, we employ the proposed technique to locate a metallic object within a thick chocolate bar, which is not accessible via conventional transmission geometry.

Keywords

Acknowledgement

Midcareer Researcher Program (2020R1A2C1005735); and Basic Science Research Program (2021R1A6A1A10044950) through a National Research Foundation grant of Korea Government; GRRC Program (GRRCAJOU2022B01, Photonics-Medical Convergence Technology Research Center) of Gyeonggi province.

References

  1. Y. Ogawa, S. Hayashi, M. Oikawa, C. Otani, and K. Kawase, "Interference terahertz label-free imaging for protein detection on a membrane," Opt. Express 16, 22083-22089 (2008). https://doi.org/10.1364/OE.16.022083
  2. S. Zhong, Y.-C. Shen, L. Ho, R. K. May, J. A. Zeitler, M. Evans, P. F. Taday, M. Pepper, T. Rades, K. C. Gordon, R. Mller, and P. Kleinebudde, "Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography," Opt. Lasers Eng. 49, 361-365 (2011). https://doi.org/10.1016/j.optlaseng.2010.11.003
  3. J. L. Tomaino, A. D. Jameson, M. J. Paul, J. W. Kevek, A. M. Van Der Zande, R. A. Barton, H. Choi, P. L. McEuen, E. D. Minot, and Y.-S. Lee, "High-contrast imaging of graphene via time-domain terahertz spectroscopy," J. Infrared Millim. Terahertz Waves 33, 839-845 (2012). https://doi.org/10.1007/s10762-012-9889-7
  4. N. M. Burford, M. O. El-Shenawee, C. B. O'neal, and K. J. Olejniczak, "Terahertz imaging for nondestructive evaluation of packaged power electronic devices," Int. J. Emerg. Technol. Adv. Eng 4, 395-401 (2014).
  5. S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, "Detection of microorganisms using terahertz metamaterials," Sci. Rep. 4, 4988 (2014). https://doi.org/10.1038/srep04988
  6. S.-H. Park, J.-W. Jang, and H.-S. Kim, "Non-destructive evaluation of the hidden voids in integrated circuit packages using terahertz time-domain spectroscopy," J. Micromech. Microeng. 25, 095007 (2015). https://doi.org/10.1088/0960-1317/25/9/095007
  7. M. Kato, S. R. Tripathi, K. Murate, K. Imayama, and K. Kawase, "Non-destructive drug inspection in covering materials using a terahertz spectral imaging system with injection-seeded terahertz parametric generation and detection," Opt. Express 24, 6425-6432 (2016). https://doi.org/10.1364/OE.24.006425
  8. S. H. Cha, S. J. Park, and Y. H. Ahn, "Investigation of sensitivity distribution in thz metamaterials using surface functionalization," Curr. Opt. Photonics 3, 566-570 (2019). https://doi.org/10.3807/COPP.2019.3.6.566
  9. H. S. Kim, N. Y. Ha, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, "Phonon-polaritons in lead halide perovskite film hybridized with thz metamaterials," Nano Lett. 20, 6690-6696 (2020). https://doi.org/10.1021/acs.nanolett.0c02572
  10. Y. Peng, C. Shi, Y. Zhu, M. Gu, and S. Zhuang, "Terahertz spectroscopy in biomedical field: A review on signal-to-noise ratio improvement," PhotoniX 1, 12 (2020). https://doi.org/10.1186/s43074-020-00011-z
  11. P. Gopalan, Y. Wang, and B. Sensale-Rodriguez, "Terahertz characterization of two-dimensional low-conductive layers enabled by metal gratings," Sci. Rep. 11, 2833 (2021). https://doi.org/10.1038/s41598-021-82560-2
  12. S. W. Jun and Y. H. Ahn, "Terahertz thermal curve analysis for label-free identification of pathogens," Nat. Commun. 13, 3470 (2022). https://doi.org/10.1038/s41467-022-31137-2
  13. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, "Nondestructive terahertz imaging of illicit drugs using spectral fingerprints," Opt. Express 11, 2549-2554 (2003). https://doi.org/10.1364/OE.11.002549
  14. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, "THz imaging and sensing for security applications-explosives, weapons and drugs," Semicond. Sci. Technol. 20, S266-S280 (2005). https://doi.org/10.1088/0268-1242/20/7/018
  15. H. Zhong, J. Xu, X. Xie, T. Yuan, R. Reightler, E. Madaras, and X.-C. Zhang, "Nondestructive defect identification with terahertz time-of-flight tomography," IEEE Sens. J. 5, 203-208 (2005). https://doi.org/10.1109/JSEN.2004.841341
  16. N. Karpowicz, A. Redo, H. Zhong, X. Li, J. Xu, and X. C. Zhang, "Continuous-wave terahertz imaging for non-destructive testing applications," in Proc. The Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, IRMMW-THz (Williamsburg, VA, USA, Sep. 19-23, 2005), pp. 329-330.
  17. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, "Detection and identification of explosives using terahertz pulsed spectroscopic imaging," Appl. Phys. Lett. 86, 241116 (2005). https://doi.org/10.1063/1.1946192
  18. M. Schirmer, M. Fujio, M. Minami, J. Miura, T. Araki, and T. Yasui, "Biomedical applications of a real-time terahertz color scanner," Biomed. Opt. Express 1, 354-366 (2010). https://doi.org/10.1364/BOE.1.000354
  19. K. Kawase, T. Shibuya, S. Hayashi, and K. Suizu, "THz imaging techniques for nondestructive inspections," C. R. Phys. 11, 510-518 (2010). https://doi.org/10.1016/j.crhy.2010.04.003
  20. K. H. Jin, Y.-G. Kim, S. H. Cho, J. C. Ye, and D.-S. Yee, "High-speed terahertz reflection three-dimensional imaging for nondestructive evaluation," Opt. Express 20, 25432-25440 (2012). https://doi.org/10.1364/OE.20.025432
  21. S. Fan, T. Li, J. Zhou, X. Liu, X. Liu, H. Qi, and Z. Mu, "Terahertz non-destructive imaging of cracks and cracking in structures of cement-based materials," AIP Adv. 7, 115202 (2017). https://doi.org/10.1063/1.4996053
  22. K. Ahi, S. Shahbazmohamadi, and N. Asadizanjani, "Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging," Opt. Lasers Eng. 104, 274-284 (2018). https://doi.org/10.1016/j.optlaseng.2017.07.007
  23. J.-Y. Zhang, J.-J. Ren, L.-J. Li, J. Gu, and D.-D. Zhang, "THz imaging technique for nondestructive analysis of debonding defects in ceramic matrix composites based on multiple echoes and feature fusion," Opt. Express 28, 19901-19915 (2020). https://doi.org/10.1364/oe.394177
  24. N. Karpowicz, H. Zhong, C. Zhang, K. I. Lin, J. S. Hwang, J. Xu, and X.-C. Zhang, "Compact continuous-wave subtera-hertz system for inspection applications," Appl. Phys. Lett. 86, 054105 (2005). https://doi.org/10.1063/1.1856701
  25. N. Karpowicz, H. Zhong, J. Xu, K. I. Lin, J. S. Hwang, and X.-C. Zhang, "Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging," Semicond. Sci. Technol. 20, S293-S299 (2005).
  26. K. L. Nguyen, M. L. Johns, L. F. Gladden, C. H. Worrall, P. Alexander, H. E. Beere, M. Pepper, D. A. Ritchie, J. Alton, S. Barbieri, and E. H. Linfield, "Three-dimensional imaging with a terahertz quantum cascade laser," Opt. Express 14, 2123-2129 (2006). https://doi.org/10.1364/OE.14.002123
  27. J.-Y. Kim, H.-J. Song, M. Yaita, A. Hirata, and K. Ajito, "CW-THz vector spectroscopy and imaging system based on 1.55-㎛ fiber-optics," Opt. Express 22, 1735-1741 (2014). https://doi.org/10.1364/OE.22.001735
  28. I.-S. Lee and J. W. Lee, "Nondestructive internal defect detection using a CW-THz imaging system in XLPE for power cable insulation," Appl. Sci. 10, 2055 (2020). https://doi.org/10.3390/app10062055
  29. S. K. Mathanker, P. R. Weckler, and N. Wang, "Terahertz (thz) applications in food and agriculture: A review," Trans. ASABE 56, 1213-1226 (2013).
  30. G. Ok, K. Park, H. J. Kim, H. S. Chun, and S.-W. Choi, "High-speed terahertz imaging toward food quality inspection," Appl. Opt. 53, 1406-1412 (2014). https://doi.org/10.1364/AO.53.001406
  31. K. Wang, D.-W. Sun, and H. Pu, "Emerging non-destructive terahertz spectroscopic imaging technique: Principle and applications in the agri-food industry," Trends Food Sci. Technol. 67, 93-105 (2017). https://doi.org/10.1016/j.tifs.2017.06.001
  32. L. Afsah-Hejri, P. Hajeb, P. Ara, and R. J. Ehsani, "A comprehensive review on food applications of terahertz spectroscopy and imaging," Compr. Rev. Food Sci. Food Saf. 18, 1563-1621 (2019). https://doi.org/10.1111/1541-4337.12490
  33. T. Nagatsuma, H. Nishii, and T. Ikeo, "Terahertz imaging based on optical coherence tomography," Photonics Res. 2, B64-B69 (2014). https://doi.org/10.1364/PRJ.2.000B64
  34. E. Cristofani, F. Friederich, S. Wohnsiedler, C. Matheis, J. Jonuscheit, M. Vandewal, and R. Beigang, "Nondestructive testing potential evaluation of a terahertz frequency-modulated continuous-wave imager for composite materials inspection," Opt. Eng. 53, 031211 (2014). https://doi.org/10.1117/1.oe.53.3.031211
  35. J. S. Yahng, C.-S. Park, H. D. Lee, C.-S. Kim, and D.-S. Yee, "High-speed frequency-domain terahertz coherence tomography," Opt. Express 24, 1053-1061 (2016). https://doi.org/10.1364/OE.24.001053
  36. H. Momiyama, Y. Sasaki, I. Yoshimine, S. Nagano, T. Yuasa, and C. Otani, "Depth super-resolved imaging of infrastructure defects using a terahertz-wave interferometer," NDT and E Int. 120, 102431 (2021). https://doi.org/10.1016/j.ndteint.2021.102431
  37. Z. Zhenwei, X. Jing, J. Rui, W. Yinghong, G. Hao, H. Siyi, Z. Cunlin, and Z. Yuejin, "Terahertz non-destructive testing and imaging of high-voltage cables," Front. Phys. 10, 893145 (2022). https://doi.org/10.3389/fphy.2022.893145
  38. J. H. Yim, S. Y. Kim, Y. Kim, S. Cho, J. Kim, and Y. H. Ahn, "Rapid 3D-imaging of semiconductor chips using THz time-of-flight technique," Appl. Sci. 11, 4770 (2021). https://doi.org/10.3390/app11114770
  39. H. S. Kim, S. Y. Baik, J. W. Lee, J. Kim, and Y. H. Ahn, "Nondestructive tomographic imaging of rust with rapid thz time-domain spectroscopy," Appl. Sci. 11, 10594 (2021). https://doi.org/10.3390/app112210594
  40. T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, "Optical sampling by laser cavity tuning," Opt. Express 18, 1613-1617 (2010). https://doi.org/10.1364/OE.18.001613
  41. R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, "OSCAT: Novel technique for time-resolved experiments without moveable optical delay lines," J. Infrared Millim. Terahertz Waves 32, 596-602 (2011). https://doi.org/10.1007/s10762-010-9670-8
  42. T. Yasui, E. Saneyoshi, and T. Araki, "Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition," Appl. Phys. Lett. 87, 061101 (2005). https://doi.org/10.1063/1.2008379
  43. A. Bartels, A. Thoma, C. Janke, T. Dekorsy, A. Dreyhaupt, S. Winnerl, and M. Helm, "High-resolution THz spectrometer with kHz scan rates," Opt. Express 14, 430-437 (2006). https://doi.org/10.1364/OPEX.14.000430
  44. Y. Kim and D.-S. Yee, "High-speed terahertz time-domain spectroscopy based on electronically controlled optical sampling," Opt. Lett. 35, 3715-3717 (2010). https://doi.org/10.1364/OL.35.003715
  45. M. Yahyapour, A. Jahn, K. Dutzi, T. Puppe, P. Leisching, B. Schmauss, N. Vieweg, and A. Deninger, "Fastest thickness measurements with a terahertz time-domain system based on electronically controlled optical sampling," Appl. Sci. 9, 1283 (2019). https://doi.org/10.3390/app9071283
  46. D.-Y. Kong, X.-J. Wu, B. Wang, Y. Gao, J. Dai, L. Wang, C.-J. Ruan, and J.-G. Miao, "High resolution continuous wave terahertz spectroscopy on solid-state samples with coherent detection," Opt. Express 26, 17964-17976 (2018). https://doi.org/10.1364/OE.26.017964
  47. L. C. Andrews, Special functions of mathematics for engineers (SPIE Press, USA, 1998).
  48. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, "Recent advances in terahertz imaging," Appl. Phys. B 68, 1085-1094 (1999). https://doi.org/10.1007/s003400050750
  49. A. A. Gowen, C. O'Sullivan, and C. P. O'Donnell, "Terahertz time domain spectroscopy and imaging: Emerging techniques for food process monitoring and quality control," Trends Food Sci. Technol. 25, 40-46 (2012). https://doi.org/10.1016/j.tifs.2011.12.006