DOI QR코드

DOI QR Code

300-W-class Side-pumped Solar Laser

  • Qi, Hongfei (Center for Astronomy and Space Science, College of Science, China Three Gorges University) ;
  • Lan, Lanling (Center for Astronomy and Space Science, College of Science, China Three Gorges University) ;
  • Liu, Yan (Center for Astronomy and Space Science, College of Science, China Three Gorges University) ;
  • Xiang, Pengfei (Center for Astronomy and Space Science, College of Science, China Three Gorges University) ;
  • Tang, Yulong (Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University)
  • Received : 2022.06.30
  • Accepted : 2022.09.29
  • Published : 2022.12.25

Abstract

To realize uniform side pumping of solar lasers and improve their output power, a solar concentrating system based on off-axis parabolic mirrors is proposed. Four identical off-axis parabolic mirrors with focal length of 1,000 mm are toroidally arranged as the primary concentrator. Four two-dimensional compound parabolic concentrators (2D-CPCs) are designed as a secondary concentrator to further compress the focused spot induced by the parabolic mirrors, and the focused light is then homogenized by four rectangular diffusers and provides uniform pumping for a laser-crystal rod to achieve solar laser emission. Simulation results show that the solar power received by the laser rod, uniformity of the light spot, and output power of the solar laser are 7,872.7 W, 98%, and 351.8 W respectively. This uniform pumping configuration and concentrator design thus provide a new means for developing high-power side-pumped solid-state solar lasers.

Keywords

Acknowledgement

National Natural Science Foundation of China (61675129); the Natural Science Foundation of Hubei Province (2014CFB671); Natural Science Foundation of Shanghai (19ZR1427100); Research Fund for Excellent Dissertation of China Three Gorges University (2021SSPY149).

References

  1. S. Sasaki, K. Tanaka, S. Kawasaki, N. Shinohara, K. Higuchi, N. Okuizumi, K. Senda, and K. Ishimura, "Conceptual study of SSPS demonstration experiment," URSI Radio Sci. Bull. 2004, 9-11 (2004).
  2. H. Liu and W. Liang, "Development of DARPA's F6 Program," Spacecr. Eng. 19, 92-98 (2010).
  3. W. O. Schall, "Laser radiation for cleaning space debris from lower earth orbits," J. Spacecr. Rockets 39, 81-91 (2002). https://doi.org/10.2514/2.3785
  4. T. Yabe, S. Uchida, K. Ikuta, K. Yoshida, C. Baasandash, M.S. Mohamed, Y. Sakurai, Y. Ogata, M. Tuji, Y. Mori, Y. Satoh, T. Ohkubo, M. Murahara, and A. Ikesue, "Demonstrated fossil-fuel-free energy cycle using magnesium and laser," Appl. Phys. Lett. 89, 261107 (2006). https://doi.org/10.1063/1.2423320
  5. C. G. Young, "A sun-pumped cw one-watt laser," Appl. Opt. 5, 993-997 (1966). https://doi.org/10.1364/AO.5.000993
  6. M. Ou, P. Hu, L. Lan, Y. Liu, J. Zhou, and X. Shi, "Design of a Fresnel lens for a solar end-pumped solid-state laser," Curr. Opt. Photonics 4, 441-445 (2020). https://doi.org/10.3807/COPP.2020.4.5.441
  7. D. Graham-Rowe, "Solar-powered lasers," Nat. Photonics 4, 64-65 (2010). https://doi.org/10.1038/nphoton.2009.272
  8. S. Mizuno, H. Ito, K. Hasegawa, T. Suzuki, and Y. Ohishi, "Laser emission from a solar-pumped fiber," Opt. Express 20, 5891-5895 (2012). https://doi.org/10.1364/OE.20.005891
  9. P. Guo, M. Ou, Y. Liu, Y. Tang, J. Zhou, and L. Lan, "Transversely pumped solar Nd3+-doped fiber laser," Optik 247, 167933 (2021). https://doi.org/10.1016/j.ijleo.2021.167933
  10. J. Falk, L. Huff, and J. Taynai, "Solar pumped, mode-locked, frequency-doubled Nd:YAG laser," IEEE J. Quantum Electron. 11, 836-837 (1975).
  11. M. Weksler and J. Shwartz, "Solar-pumped solid-state lasers," IEEE J. Quantum Electron. 24, 1222-1228 (1988). https://doi.org/10.1109/3.247
  12. M. Lando, J. Kagan, B. Linygekin, and V. Dobrusin, "A solar pumped Nd:YAG laser in the high collection efficiency regime," Opt. Commun. 222, 371-381 (2003). https://doi.org/10.1016/S0030-4018(03)01601-8
  13. T. Yabe, T. Ohkubo, S. Uchida, K. Yoshida, M. Nakatsuka, T. Funatsu, A. Mabuti, A. Oyama, K. Nakagawa, T. Oishi, K. Daito, B. Behgol, Y. Nakayama, M. Yoshida, S. Motokoshi, Y. Sato, and C. Baasandash, "High-efficiency and economical solar- energy-pumped laser with Fresnel lens and chromium codoped laser medium," Appl. Phys. Lett. 90, 261120 (2007). https://doi.org/10.1063/1.2753119
  14. S. Uchida, T. Yabe, Y. Sato, K. Yoshida, A. Ikesue, T. Ohkubo, A. Mabuchi, Y. Ogata, K. Nakagawa, A. Ohyama, N. Onodera, T. Ohishi, Y. Ohtaka, Y. Yamada, and S. Ito, "Experimental study of solar pumped laser for magnesium-hydrogen energy cycle," AIP Conf. Proc. 830, 439-446 (2006).
  15. T. Yabe, B. Bagheri, T. Ohkubo, S. Uchida, K. Yoshida, T. Funatsu, T. Oishi, K. Daito, M. Ishioka, N. Yasunaga, Y. Sato, C. Baasandash, Y, Okamoto, and K. Yanagitan, "100 W-class solar pumped laser for sustainable magnesium- hydrogen energy cycle," J. Appl. Phys. 104, 083104 (2008). https://doi.org/10.1063/1.2998981
  16. D. Liang and R. Pereira, "Diode pumping of a solid-state laser rod by a two-dimensional CPC-elliptical cavity with intervening optics," Opt. Commun. 275, 104-115 (2007). https://doi.org/10.1016/j.optcom.2007.02.024
  17. J. P. Geraldes and D. Liang, "An alternative solar pumping approach by a light guide assembly elliptical-cylindrical cavity," Sol. Energy Mater. Sol. Cells. 92, 836-843 (2008). https://doi.org/10.1016/j.solmat.2008.01.019
  18. D. Liang and J. Almeida, "Highly efficient solar-pumped Nd:YAG laser," Opt. Express 19, 26399-26405 (2011). https://doi.org/10.1364/OE.19.026399
  19. R. Boutaka, D. Liang, R. Bouadjemine, M. Traiche, and A. Kellou, "A compact solar laser side-pumping scheme using four offaxis parabolic mirrors," J. Rus. Laser Res. 42, 453-461 (2021). https://doi.org/10.1007/s10946-021-09982-1
  20. V. Krupkin, J. A. Kagan, and A. Yogev, "Non imaging optics and solar laser pumping at the Weizmann Institute," Proc. SPIE 2016, 50-60 (1993).
  21. S. Johnson, F. Kuppers, and S. Pau, "Efficiency of continuous-wave solar pumped semiconductor lasers," Opt. Laser Technol. 47, 194-198 (2013). https://doi.org/10.1016/j.optlastec.2012.08.037
  22. O. Danilov, A. Zhevlakov, and M. Yur'ev, "Optically (Solar) pumped oxygen-iodine lasers," Opt. Spectrosc. 117, 145-151 (2014). https://doi.org/10.1134/S0030400X14070054
  23. S. Payziyev, S. Bakhramov, and F. Shayimov, "Enhancing of solar pumped liquid laser efficiency," Appl. Sol. Energy. 52, 68-71 (2016). https://doi.org/10.3103/s0003701x16010096
  24. S. Yang, P. Xu, C. Zhao, Z. Guan, H. Wang, Y. Zhang, H. Zhang, and T. He, "28 W solar-pumped laser with a grooved Nd:YAG rod," in Advanced Solid State Lasers 2014 (Optical Society of America, 2014), paper ATU2A.45.
  25. X. Chen, Y. Yu, C. Wang, C. Wu, C. Zhang, and G. Jin. "Study on the uniformity of temperature field distribution in LD side-pumped laser," Optik 124, 2067-2071 (2013). https://doi.org/10.1016/j.ijleo.2012.06.051
  26. C. Zhao, Solar pumped lasers, 1st ed. (Nation Defense Industry Press, Beijing, China, 2016), pp. 60-70.
  27. W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, Berlin, Germany, 1999), pp. 48-49.
  28. J. Almeida, D. Liang, C. R. Vistas, and E. Guillot, "Highly efficient end-side-pumped Nd:YAG solar laser by a heliostat-parabolic mirror system," Appl. Opt. 54, 1970-1977 (2015). https://doi.org/10.1364/ao.54.001970