• Title/Summary/Keyword: Image splicing

Search Result 11, Processing Time 0.019 seconds

Fast Image Splicing Detection Algorithm Using Markov Features (마코프 특징을 이용하는 고속 위조 영상 검출 알고리즘)

  • Kim, Soo-min;Park, Chun-Su
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.227-232
    • /
    • 2018
  • Nowadays, image manipulation is enormously popular and easier than ever with tons of convenient images editing tools. After several simple operations, users can get visually attractive images which easily trick viewers. In this paper, we propose a fast algorithm which can detect the image splicing using the Markov features. The proposed algorithm reduces the computational complexity by removing unnecessary Markov features which are not used in the image splicing detection process. The performance of the proposed algorithm is evaluated using a famous image splicing dataset which is publicly available. The experimental results show that the proposed technique outperforms the state-of-the-art splicing detection methods.

Efficient Markov Feature Extraction Method for Image Splicing Detection (접합영상 검출을 위한 효율적인 마코프 특징 추출 방법)

  • Han, Jong-Goo;Park, Tae-Hee;Eom, Il-Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.111-118
    • /
    • 2014
  • This paper presents an efficient Markov feature extraction method for detecting splicing forged images. The Markov states used in our method are composed of the difference between DCT coefficients in the adjacent blocks. Various first-order Markov state transition probabilities are extracted as features for splicing detection. In addition, we propose a feature reduction algorithm by analysing the distribution of the Markov probability. After training the extracted feature vectors using the SVM classifier, we determine whether the presence of the image splicing forgery. Experimental results verify that the proposed method shows good detection performance with a smaller number of features compared to existing methods.

Quaternion Markov Splicing Detection for Color Images Based on Quaternion Discrete Cosine Transform

  • Wang, Jinwei;Liu, Renfeng;Wang, Hao;Wu, Bin;Shi, Yun-Qing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2981-2996
    • /
    • 2020
  • With the increasing amount of splicing images, many detection schemes of splicing images are proposed. In this paper, a splicing detection scheme for color image based on the quaternion discrete cosine transform (QDCT) is proposed. Firstly, the proposed quaternion Markov features are extracted in QDCT domain. Secondly, the proposed quaternion Markov features consist of global and local quaternion Markov, which utilize both magnitude and three phases to extract Markov features by using two different ways. In total, 2916-D features are extracted. Finally, the support vector machine (SVM) is used to detect the splicing images. In our experiments, the accuracy of the proposed scheme reaches 99.16% and 97.52% in CASIA TIDE v1.0 and CASIA TIDE v2.0, respectively, which exceeds that of the existing schemes.

Spliced Image Detection Using Characteristic Function Moments of Co-occurrence Matrix (동시 발생 행렬의 특성함수 모멘트를 이용한 접합 영상 검출)

  • Park, Tae-Hee;Moon, Yong-Ho;Eom, Il-Kyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.5
    • /
    • pp.265-272
    • /
    • 2015
  • This paper presents an improved feature extraction method to achieve a good performance in the detection of splicing forged images. Strong edges caused by the image splicing destroy the statistical dependencies between parent and child subbands in the wavelet domain. We analyze the co-occurrence probability matrix of parent and child subbands in the wavelet domain, and calculate the statistical moments from two-dimensional characteristic function of the co-occurrence matrix. The extracted features are used as the input of SVM classifier. Experimental results show that the proposed method obtains a good performance with a small number of features compared to the existing methods.

Selective Feature Extraction Method Between Markov Transition Probability and Co-occurrence Probability for Image Splicing Detection (접합 영상 검출을 위한 마르코프 천이 확률 및 동시발생 확률에 대한 선택적 특징 추출 방법)

  • Han, Jong-Goo;Eom, Il-Kyu;Moon, Yong-Ho;Ha, Seok-Wun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.833-839
    • /
    • 2016
  • In this paper, we propose a selective feature extraction algorithm between Markov transition probability and co-occurrence probability for an effective image splicing detection. The Features used in our method are composed of the difference values between DCT coefficients in the adjacent blocks and the value of Kullback-Leibler divergence(KLD) is calculated to evaluate the differences between the distribution of original image features and spliced image features. KLD value is an efficient measure for selecting Markov feature or Co-occurrence feature because KLD shows non-similarity of the two distributions. After training the extracted feature vectors using the SVM classifier, we determine whether the presence of the image splicing forgery. To verify our algorithm we used grid search and 6-folds cross-validation. Based on the experimental results it shows that the proposed method has good detection performance with a limited number of features compared to conventional methods.

Color Image Splicing Detection using Benford's Law and color Difference (밴포드 법칙과 색차를 이용한 컬러 영상 접합 검출)

  • Moon, Sang-Hwan;Han, Jong-Goo;Moon, Yong-Ho;Eom, Il-Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.160-167
    • /
    • 2014
  • This paper presents a spliced color image detection method using Benford' Law and color difference. For a suspicious image, after color conversion, the discrete wavelet transform and the discrete cosine transform are performed. We extract the difference between the ideal Benford distribution and the empirical Benford distribution of the suspicious image as features. The difference between Benford distributions for each color component were also used as features. Our method shows superior splicing detection performance using only 13 features. After training the extracted feature vector using SVM classifier, we determine whether the presence of the image splicing forgery. Experimental results show that the proposed method outperforms the existing methods with smaller number of features in terms of splicing detection accuracy.

Detection of Spliced Image Using Run-length of Wavelet Coefficients and Statistical Moments (웨이블릿 계수의 런-길이와 통계적 모멘트를 이용한 접합 영상 검출)

  • Kim, Tae-Hyung;Han, Jong-Goo;Park, Tae-Hee;Eom, Il-Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.152-159
    • /
    • 2014
  • In this paper, we introduce a run-length for wavelet coefficients and present a image splicing detection method using the statistical moments for the wavelet run-length. Various pre-processings for the suspicious image are performed to emphasize the discontinuous edges caused by the image splicing. The proposed scheme has the merit that can exploit the various statistical characteristics of the wavelet transform. We extracted up to 72 features, and performed training and testing using SVM(support vector machine). Experimental results showed that the proposed method generates similar detection results compared to the existing methods. In addition, we showed the wavelet domain run-length is useful to detect the spliced image.

A DCT Learning Combined RRU-Net for the Image Splicing Forgery Detection (DCT 학습을 융합한 RRU-Net 기반 이미지 스플라이싱 위조 영역 탐지 모델)

  • Young-min Seo;Jung-woo Han;Hee-jung Kwon;Su-bin Lee;Joongjin Kook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.11-17
    • /
    • 2023
  • This paper proposes a lightweight deep learning network for detecting an image splicing forgery. The research on image forgery detection using CNN, a deep learning network, and research on detecting and localizing forgery in pixel units are in progress. Among them, CAT-Net, which learns the discrete cosine transform coefficients of images together with images, was released in 2022. The DCT coefficients presented by CAT-Net are combined with the JPEG artifact learning module and the backbone model as pre-learning, and the weights are fixed. The dataset used for pre-training is not included in the public dataset, and the backbone model has a relatively large number of network parameters, which causes overfitting in a small dataset, hindering generalization performance. In this paper, this learning module is designed to learn the characterization depending on the DCT domain in real-time during network training without pre-training. The DCT RRU-Net proposed in this paper is a network that combines RRU-Net which detects forgery by learning only images and JPEG artifact learning module. It is confirmed that the network parameters are less than those of CAT-Net, the detection performance of forgery is better than that of RRU-Net, and the generalization performance for various datasets improves through the network architecture and training method of DCT RRU-Net.

  • PDF

Image Forgery Detection Using a Noise Dependent Watershed Transformation (잡음종속 Watershed 변환을 이용한 이미지 위조 검출)

  • Doyoddorj, Munkhbaatar;Rhee, Kyung-Hyune
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.667-670
    • /
    • 2013
  • Noise is unwanted in high quality images, but it can aid image tampering. For example, noise can be intentionally added in image to conceal tampered regions or to create special visual effects. It may also be introduced unknowingly during camera imaging process, which makes the noise levels inconsistent in splicing images. In this paper, we present an image forgery detection method using a noise dependent watershed transformation. Image is segmented into objects for initial noise estimation by the watershed transformation, and different noise level in objects are estimated to obtain final decision result. Experimental results of the proposed method on natural images are presented.

A Study on 360° Image Production Method for VR Image Contents (VR 영상 콘텐츠 제작에 유용한 360도 이미지 제작 방법에 관한 연구)

  • Guo, Dawei;Chung, Jeanhun
    • Journal of Digital Convergence
    • /
    • v.15 no.12
    • /
    • pp.543-548
    • /
    • 2017
  • $360^{\circ}$panoramic image can give people an unprecedented visual experience, and there are many different ways to make a $360^{\circ}$panoramic image. In this paper, we will introduce two easy and effective methods from those many ways. The first one is through 48 photos to make a $360^{\circ}$panoramic image, the second way is through 6 photos to make a $360^{\circ}$panoramic image. We will compare those methods and tell the audience which one suits themselves. Through those easy design methods introduced above, we can see VR works design became easy and popular, normal people can also make $360^{\circ}$panoramic image, and it promotes the industry of VR image contents.