DOI QR코드

DOI QR Code

Fast Image Splicing Detection Algorithm Using Markov Features

마코프 특징을 이용하는 고속 위조 영상 검출 알고리즘

  • Kim, Soo-min (Dept. of Computer Education, Sungkyunkwan University) ;
  • Park, Chun-Su (Dept. of Computer Education, Sungkyunkwan University)
  • Received : 2018.04.03
  • Accepted : 2018.05.14
  • Published : 2018.06.30

Abstract

Nowadays, image manipulation is enormously popular and easier than ever with tons of convenient images editing tools. After several simple operations, users can get visually attractive images which easily trick viewers. In this paper, we propose a fast algorithm which can detect the image splicing using the Markov features. The proposed algorithm reduces the computational complexity by removing unnecessary Markov features which are not used in the image splicing detection process. The performance of the proposed algorithm is evaluated using a famous image splicing dataset which is publicly available. The experimental results show that the proposed technique outperforms the state-of-the-art splicing detection methods.

이미지 편집 툴의 발전으로 일반 사용자도 원본 이미지를 조작하여 실제와 다른 영상 정보를 전달하는 것이 가능하게 되었다. 이러한 사회적 변화에 따라 이미지의 신뢰도는 매우 낮아지게 되었고 이미지의 조작여부를 검출하는 시스템의 필요성이 제기되고 있다. 본 논문에서는 마코프 특징을 이용하여 이미지 조작 여부를 검출하는 알고리즘을 제안한다. 제안하는 방법은 전체 입력 이미지에서 마코프 특징을 추출하고, 그 중 위조 여부 검출에 사용되지 않는 불필요한 특징을 제거한다. 따라서 제안하는 기술은 위조 검출에 사용되는 마코프 특징의 수를 감소시켜 전체 검출 속도를 향상시키는 효과가 있다. 실험을 통해 제안하는 방법은 상대적으로 낮은 복잡도로 우수한 위조 검출 성능을 보임을 확인하였다.

Keywords

References

  1. He Zhongwei, Lu Wei, Sun Wei and Huang Jiwu, "Digital Image Splicing Detection Based on Markov Features in DCT and DWT Domain," Pattern Recognition, vo. 45, no. 12, pp. 4292-4299, 2012. DOI:10.1016/j.patcog.2012.05.014
  2. Yujin Zhang, Chenglin Zhao, Yiming Pi, Shenghong Li and Shilin Wang, "Image-splicing Forgery Detection Based on Local Binary Patterns of DCT Coefficients," Security and Communication Networks, vo. 8, no. 14, 2013.DOI:10.1002/sec.721
  3. Il Kyu Eom, Jong Goo Han, Tae Hee Park and Yong Ho Moon, "Efficient Markov Features Extraction Method for Image Splicing Detection Using Maximization and Threshold Expansion," Journal of Electronic Imaging, vo. 25, no. 2, 2016.DOI:10.1117/1.JEI.25.2.023031
  4. E-Sayed M. El-Alfy, Muhammad Ali Qureshi, "Combining Spatial and DCT Based Markov Features for Enhanced Blind Detection of Image Splicing," Pattern Analysis and Applications, vo. 18, no. 3, pp. 713-723, 2015.DOI:10.1007/s10044-014-0396-4
  5. Li, C., Ma, Q., Xiao, L., Li, M., and Zhang, A., "Image Splicing Detection Based on Markov Features in QDCT Domain," Neurocomputing, vo. 228, pp. 29-36, 2017. DOI:10.1016/j.neucom.2016.04.068
  6. Bo Su, Quanqiao Yuan, Shilin Wang, Chenglin Zhao and Shenghong Li, "Enhanced State Selection Markov Model for Image Splicing Detection," EURASIP Journal on Wireless Communications and Networking, 2014.DOI: 10.1186/1687-1499-2014-7
  7. Tian-Tsong Ng, Shih-Fu Chang and Qibin Sun, "Blind Detection of Photomontage Using Higher Order Statistics," IEEE International Symposium on Circuits and Systems, vo. 5, pp. 688-691, 2004.DOI: 10.1109/ISCAS.2004.1329901
  8. Wen Chena, Yun Q. Shia and Wei Sub, "Image Splicing Detection Using 2-D Phase Congruency and Statistical Moments of Characteristic Function," Proceedings of SPIE - The International Society for Optical Engineering, vo, 6505, 2007. DOI: 10.1117/12.704321
  9. Jong-Goo Han, Tae-Hee Park, and Il-Kyu Eom, "Efficient Markov Feature Extraction Method for Image Splicing Detection," Journal of Electronic Imaging, vo. 25, no. 12, 2016. DOI : 10.5573/ieie.2014.51.9.111
  10. Jong-Goo Han, Il-Kyu Eom, Yong-Ho Moon, Seok-Wun Ha, "Selective Feature Extraction Method Between Markov Transition Probability and Co-occurrence Probability for Image Splicing Detection," The Korean Institute of Information and Commucation Engineering, vo. 20, no. 4, pp. 833-839, 2016. DOI: 10.6109/jkiice.2016.20.4.833
  11. Luyi Chen, Shilin Wang, Shenghong Li and Jianhua Li, "New Feature Presentation of Transition Probability Matrix for Image Tampering Detection," Digital Forensics and Watermarking, pp. 376-386, 2008. DOI:10.1007/978-3-642-32205-1_30
  12. A. Tzotsos, D. Argialas, "Support Vector Machine Classification for Object-based Image Analysis," Object-Based Image Analysis, pp. 663-677, 2008. DOI:10.1007/978-3-540-77058-9_36
  13. Chun-Su Park, Changjae Kim, Jihoon Lee and Goo-Rak Kwon, "Rotation and scale invariant upsampled log-polar fourier descriptor for copy-move forgery detection,"Multimedia Tools and Applications, vo. 75, no. 23, pp. 16577-16595, 2016. DOI:10.1007/s11042-016-3575-z
  14. Yun Q. Shi , Chunhua Chen and Wen Chen, "A Natural Image Model Approach to Splicing Detection," MM& Sec, pp. 51-62, 2007.DOI:10.1145/1288869.1288878
  15. "CASIA Tampered Image Detection Evaluation Database 2.0", http://forensics.idealtest.org/casiav2/.