DOI QR코드

DOI QR Code

Detection of Spliced Image Using Run-length of Wavelet Coefficients and Statistical Moments

웨이블릿 계수의 런-길이와 통계적 모멘트를 이용한 접합 영상 검출

  • Kim, Tae-Hyung (Dept. Electronics Eng., Pusan National University) ;
  • Han, Jong-Goo (Dept. Electronics Eng., Pusan National University) ;
  • Park, Tae-Hee (Dep. Mechatronics Eng., TongMyung University) ;
  • Eom, Il-Kyu (Dept. Electronics Eng., Pusan National University)
  • 김태형 (부산대학교 전자공학과) ;
  • 한종구 (부산대학교 전자공학과) ;
  • 박태희 (동명대학교 메카트로닉스공학과) ;
  • 엄일규 (부산대학교 전자공학과)
  • Received : 2013.12.24
  • Accepted : 2014.04.23
  • Published : 2014.05.25

Abstract

In this paper, we introduce a run-length for wavelet coefficients and present a image splicing detection method using the statistical moments for the wavelet run-length. Various pre-processings for the suspicious image are performed to emphasize the discontinuous edges caused by the image splicing. The proposed scheme has the merit that can exploit the various statistical characteristics of the wavelet transform. We extracted up to 72 features, and performed training and testing using SVM(support vector machine). Experimental results showed that the proposed method generates similar detection results compared to the existing methods. In addition, we showed the wavelet domain run-length is useful to detect the spliced image.

본 논문에서는 웨이블릿 계수에 대한 런-길이를 도입하고, 웨이블릿 런-길이에 대한 통계적 모멘트를 이용한 영상 접합검출 방법을 제안한다. 영상 접합에 의해 발생된 불연속 에지를 강조하기 위하여, 접합 의심 영상에 대하여 다양한 전처리를 수행하였다. 제안 방법은 웨이블릿 변환이 가지는 다양한 통계적 특성을 사용할 수 있는 장점을 가지고 있다. 본 논문에서는 72개 까지 특징을 추출하였으며, SVM(support vector machine) 분류기를 이용하여 학습 및 검증을 수행하였다. 본 논문의 방법은 기존의 방법과 유사한 영상 접합 조작 결과를 보였으며, 웨이블릿 영역에서의 런-길이가 영상 접합 검출에 유용함을 보였다.

Keywords

References

  1. H. Farid, "A picture tells a thousand lies", New Scientist, vol. 2411, pp. 38-41, 2003.
  2. I. J. Cox, M. L. Miller, and J. A. Bloom, Digital watermarking, San Francisco, CA: Morgan Kaufmann, 2002.
  3. M. Schneider and S. F. Chang, "A robust content based digital signature for image authentication", Proc. of IEEE International Conference on Image Processing, vol. 3, pp. 227-230, 1996.
  4. T. T. Ng, S. F. Chang and Q. Sun, "Blind detection of photomontage using higher order statistics", Proceedings of IEEE International Symposium on Circuits and Systems, vol. 5, pp. 688-691, 2004
  5. W. Chen, Y. Q. Shi, and W. Su, "Image splicing detection using 2-D phase congruency and statistical moments of characteristic function," Proceedings of SPIE Electronic Imaging: Security, Steganography, and Watermarking of Multimedia Contents, vol. 6505, pp. 6505R.1-6505R.8., 2007.
  6. M. K. Johnson and H. Farid, "Exposing digital forgeries in complex lighting environments," IEEE Trans. Inform. Forensics Security, vol. 3, no. 2, pp. 450-461, 2007.
  7. Y. F. Hsu and S. F. Chang, "Detecting image splicing using geometry invariants and camera characteristics consistency", Proceedings of IEEE International Conference on Multimedia and Expo, pp. 549-552, 2006.
  8. D. Fu, Y. Q. Shi, and W. Su, "Detection of image splicing based on hilbert-huang transform and moments of characteristic functions with wavelet decomposition," IWDW 2006. LNCS, vol. 4283, pp. 177-187. Springer, Heidelberg, 2006.
  9. B. Mahdian, and S. Saic, "A bibliography on blind methods for identifying image forgery," Signal Processing: Image Communication, vol. 25, no. 6, pp. 389-399, 2010. https://doi.org/10.1016/j.image.2010.05.003
  10. H. Farid, "A survey of image forgery detection," IEEE Signal Processing Magazine, vol. 26, no. 2, pp. 16-25, 2009. https://doi.org/10.1109/MSP.2008.931079
  11. J. Dong, W. Wang, T. Tan, and Y. Q. Shi, "Run-Length and edge statistics based approach for image splicing detection," LNCS, vol. 5450, pp. 76-87, 2009.
  12. Z. He, W. Lu, and W, Sun, "Improved run length based detection of digital image splicing," Digital Forensics and Watermarking, pp. 349-360, Springer Berlin Heidelberg, 2012
  13. Z. He, W. Sun, W. Lu, H. Lu, "Digital image splicing detection based on approximate run length," Pattern Recognition Letters, vol. 32, no. 12, pp. 1591-1597, 2011. https://doi.org/10.1016/j.patrec.2011.05.013
  14. M. M. Galloway, "Texture analysis using gray level run lengths," Cornput. Graph. Image Proc., vol. 4, pp. 171-179, 1975.
  15. W. N. Lie and G. S. Lin, "A feature-based classification technique for blind image steganalysis," IEEE Transactions on Multimedia, vol. 7, no. 6, pp. 1007-1020, 2005. https://doi.org/10.1109/TMM.2005.858377
  16. G. Gul and F. Kurugollu, "SVD-based universal spatial domain image steganalysis," IEEE Transactions on Information Forensics and Security, vol. 5, no. 2 pp. 349-353, 2010.. https://doi.org/10.1109/TIFS.2010.2041826
  17. T. T. Ng, and S. F. Chang, "A data set of authentic and spliced image blocks," Tech. Rep. 203-2004-3, Columbia University, 2004.
  18. C. C. Chang and C. J. Lin, "LIBSVM: A library for support vector machines," ACM Transaction s on Intelligent Systems and Technology, vol. 2, no. 3, 2011.
  19. O. M. Al-Qershi, and B. E. Khoo, "Passive detection of copy-move forgery in digital images: State-of-the-art," Forensic Science International, vol. 231, pp. 284-295, 2013. https://doi.org/10.1016/j.forsciint.2013.05.027