• Title/Summary/Keyword: Image feature extraction

Search Result 1,026, Processing Time 0.029 seconds

Study on 3 DoF Image and Video Stitching Using Sensed Data

  • Kim, Minwoo;Chun, Jonghoon;Kim, Sang-Kyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4527-4548
    • /
    • 2017
  • This paper proposes a method to generate panoramic images by combining conventional feature extraction algorithms (e.g., SIFT, SURF, MPEG-7 CDVS) with sensed data from inertia sensors to enhance the stitching results. The challenge of image stitching increases when the images are taken from two different mobile phones with no posture calibration. Using inertia sensor data obtained by the mobile phone, images with different yaw, pitch, and roll angles are preprocessed and adjusted before performing stitching process. Performance of stitching (e.g., feature extraction time, inlier point numbers, stitching accuracy) between conventional feature extraction algorithms is reported along with the stitching performance with/without using the inertia sensor data. In addition, the stitching accuracy of video data was improved using the same sensed data, with discrete calculation of homograph matrix. The experimental results for stitching accuracies and speed using sensed data are presented in this paper.

An efficient learning algorithm of nonlinear PCA neural networks using momentum (모멘트를 이용한 비선형 주요성분분석 신경망의 효율적인 학습알고리즘)

  • Cho, Yong-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.4
    • /
    • pp.361-367
    • /
    • 2000
  • This paper proposes an efficient feature extraction of the image data using nonlinear principal component analysis neural networks of a new learning algorithm. The proposed method is a learning algorithm with momentum for reflecting the past trends. It is to get the better performance by restraining an oscillation due to converge the global optimum. The proposed algorithm has been applied to the cancer image of $256{\times}256$ pixels and the coin image of $128{\times}128$ pixels respectively. The simulation results show that the proposed algorithm has better performances of the convergence and the nonlinear feature extraction, in comparison with those using the backpropagation and the conventional nonlinear PCA neural networks.

  • PDF

Efficient Image Stitching Using Fast Feature Descriptor Extraction and Matching (빠른 특징점 기술자 추출 및 정합을 이용한 효율적인 이미지 스티칭 기법)

  • Rhee, Sang-Burm
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.1
    • /
    • pp.65-70
    • /
    • 2013
  • Recently, the field of computer vision has been actively researched through digital image which can be easily generated as the development and expansion of digital camera technology. Especially, research that extracts and utilizes the feature in image has been actively carried out. The image stitching is a method that creates the high resolution image using features extract and match. Image stitching can be widely used in military and medical purposes as well as in variety fields of real life. In this paper, we have proposed efficient image stitching method using fast feature descriptor extraction and matching based on SURF algorithm. It can be accurately, and quickly found matching point by reduction of dimension of feature descriptor. The feature descriptor is generated by classifying of unnecessary minutiae in extracted features. To reduce the computational time and efficient match feature, we have reduced dimension of the descriptor and expanded orientation window. In our results, the processing time of feature matching and image stitching are faster than previous algorithms, and also that method can make natural-looking stitched image.

Image Matching Based on Robust Feature Extraction for Remote Sensing Haze Images (위성 안개 영상을 위한 강인한 특징점 검출 기반의 영상 정합)

  • Kwon, Oh-Seol
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.272-275
    • /
    • 2016
  • This paper presents a method of single image dehazing and surface-based feature detection for remote sensing images. In the conventional dark channel prior (DCP) algorithm, the resulting transmission map invariably includes some block artifacts because of patch-based processing. This also causes image blur. Therefore, a refined transmission map based on a hidden Markov random field and expectation-maximization algorithm can reduce the block artifacts and also increase the image clarity. Also, the proposed algorithm enhances the accuracy of image matching surface-based features in an remote sensing image. Experimental results confirm that the proposed algorithm is superior to conventional algorithms in image haze removal. Moreover, the proposed algorithm is suitable for the problem of image matching based on feature extraction.

Automatic Extraction and Measurement of Visual Features of Mushroom (Lentinus edodes L.) (표고 외관 특징점의 자동 추출 및 측정)

  • Hwang, Heon;Lee, Yong-Guk
    • Journal of Bio-Environment Control
    • /
    • v.1 no.1
    • /
    • pp.37-51
    • /
    • 1992
  • Quantizing and extracting visual features of mushroom(Lentinus edodes L.) are crucial to the sorting and grading automation, the growth state measurement, and the dried performance indexing. A computer image processing system was utilized for the extraction and measurement of visual features of front and back sides of the mushroom. The image processing system is composed of the IBM PC compatible 386DK, ITEX PCVISION Plus frame grabber, B/W CCD camera, VGA color graphic monitor, and image output RGB monitor. In this paper, an automatic thresholding algorithm was developed to yield the segmented binary image representing skin states of the front and back sides. An eight directional Freeman's chain coding was modified to solve the edge disconnectivity by gradually expanding the mask size of 3$\times$3 to 9$\times$9. A real scaled geometric quantity of the object was directly extracted from the 8-directional chain element. The external shape of the mushroom was analyzed and converted to the quantitative feature patterns. Efficient algorithms for the extraction of the selected feature patterns and the recognition of the front and back side were developed. The developed algorithms were coded in a menu driven way using MS_C language Ver.6.0, PC VISION PLUS library fuctions, and VGA graphic functions.

  • PDF

Visual Feature Extraction for Image Retrieval using Wavelet Coefficient’s Fuzzy Homogeneity and High Frequency Energy (웨이브릿 계수의 퍼지 동질성과 고주파 에너지를 이용한 영상 검색용 특징벡터 추출)

  • 박원배;류은주;송영준
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.1
    • /
    • pp.18-23
    • /
    • 2004
  • In this paper, we propose a new visual feature extraction method for content-based image retrieval(CBIR) based on wavelet transform which has both spatial-frequency characteristic and multi-resolution characteristic. We extract visual features for each frequency band in wavelet transformation and use them to CBIR. The lowest frequency band involves spacial information of original image. We extract L feature vectors using fuzzy homogeneity in the wavelet domain, which consider both the wavelet coefficients and the spacial information of each coefficient. Also, we extract 3 feature vectors wing the energy values of high frequency bands, and store those to image database. As a query, we retrieve the most similar image from image database according to the 10 largest homograms(normalized fuzzy homogeneity vectors) and 3 energy values. Simulation results show that the proposed method has good accuracy in image retrieval using 90 texture images.

  • PDF

Crease detection method using fingerprint image decomposition and composition (지문 영상의 분해 및 합성에 의한 주름선 검출방법)

  • Hwang, Woon-Joo;Park, Sung-Wook;Park, Jong-Kwan;Park, Jong-Wook
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.3
    • /
    • pp.90-97
    • /
    • 2007
  • For a highly reliable fingerprint recognition system, the precise and accurate feature extraction is indispensable. In this paper, We propose a highly efficient crease extraction method, which can improve the accuracy of feature extraction within the fingerprint image. The proposed method applies the 1-dimensional directional slit for each pixel in fingerprint image. And then it calculates the average grey level and variance to determine whether the current pixel composes the crease, and estimates the direction of crease. Once the direction of every pixel in crease candidate area is estimated, it is decomposed into 8 different images depending on their direction. From the 8 directional images, the crease clusters are estimated by utilizing the property of crease area. The proposed method finally extracts the crease from the crease clusters estimated from directional images. In conclusion, the proposed method highly improved the accuracy of overall feature extraction by accurate and precise extraction of the crease from fingerprint image.

FPGA Design of a SURF-based Feature Extractor (SURF 알고리즘 기반 특징점 추출기의 FPGA 설계)

  • Ryu, Jae-Kyung;Lee, Su-Hyun;Jeong, Yong-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.368-377
    • /
    • 2011
  • This paper explains the hardware structure of SURF(Speeded Up Robust Feature) based feature point extractor and its FPGA verification result. SURF algorithm produces novel scale- and rotation-invariant feature point and descriptor which can be used for object recognition, creation of panorama image, 3D Image restoration. But the feature point extraction processing takes approximately 7,200msec for VGA-resolution in embedded environment using ARM11(667Mhz) processor and 128Mbytes DDR memory, hence its real-time operation is not guaranteed. We analyzed integral image memory access pattern which is a key component of SURF algorithm to reduce memory access and memory usage to operate in c real-time. We assure feature extraction that using a Vertex-5 FPGA gives 60frame/sec of VGA image at 100Mhz.

Cluster-based Linear Projection and %ixture of Experts Model for ATR System (자동 목표물 인식 시스템을 위한 클러스터 기반 투영기법과 혼합 전문가 구조)

  • 신호철;최재철;이진성;조주현;김성대
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.3
    • /
    • pp.203-216
    • /
    • 2003
  • In this paper a new feature extraction and target classification method is proposed for the recognition part of FLIR(Forwar Looking Infrared)-image-based ATR system. Proposed feature extraction method is "cluster(=set of classes)-based"version of previous fisherfaces method that is known by its robustness to illumination changes in face recognition. Expecially introduced class clustering and cluster-based projection method maximizes the performance of fisherfaces method. Proposed target image classification method is based on the mixture of experts model which consists of RBF-type experts and MLP-type gating networks. Mixture of experts model is well-suited with ATR system because it should recognizee various targets in complexed feature space by variously mixed conditions. In proposed classification method, one expert takes charge of one cluster and the separated structure with experts reduces the complexity of feature space and achieves more accurate local discrimination between classes. Proposed feature extraction and classification method showed distinguished performances in recognition test with customized. FLIR-vehicle-image database. Expecially robustness to pixelwise sensor noise and un-wanted intensity variations was verified by simulation.

Adaptive Processing for Feature Extraction: Application of Two-Dimensional Gabor Function

  • Lee, Dong-Cheon
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.4
    • /
    • pp.319-334
    • /
    • 2001
  • Extracting primitives from imagery plays an important task in visual information processing since the primitives provide useful information about characteristics of the objects and patterns. The human visual system utilizes features without difficulty for image interpretation, scene analysis and object recognition. However, to extract and to analyze feature are difficult processing. The ultimate goal of digital image processing is to extract information and reconstruct objects automatically. The objective of this study is to develop robust method to achieve the goal of the image processing. In this study, an adaptive strategy was developed by implementing Gabor filters in order to extract feature information and to segment images. The Gabor filters are conceived as hypothetical structures of the retinal receptive fields in human vision system. Therefore, to develop a method which resembles the performance of human visual perception is possible using the Gabor filters. A method to compute appropriate parameters of the Gabor filters without human visual inspection is proposed. The entire framework is based on the theory of human visual perception. Digital images were used to evaluate the performance of the proposed strategy. The results show that the proposed adaptive approach improves performance of the Gabor filters for feature extraction and segmentation.