• Title/Summary/Keyword: Image feature extraction

Search Result 1,026, Processing Time 0.026 seconds

An Effective Crease Detection Method for Feature Information Extraction in Fingerprint Images (지문 영상의 특징 정보 추출을 위한 효율적인 주름선 추출 방법)

  • Park, Sung-Wook;Lee, Byung-Jin
    • 전자공학회논문지 IE
    • /
    • v.44 no.2
    • /
    • pp.32-40
    • /
    • 2007
  • In this paper, the crease extraction method is proposed to improve the accuracy of feature extraction within the fingerprint image. First of all, for each pixel in fingerprint image, it calculates the average grey level and variance to determine if the current pixel composes the crease, and estimates the direction of crease. Secondly, once the direction of every pixel in crease candidate area is estimated, it is decomposed into 8 different images, depending on their direction. The properties of crease consists of the length of the crease candidate area, the correspondence between the crease direction and the pixel distribution direction, the difference between the ridge direction and the pixel distribution direction, and finally the grey level of the candidate pixels. The proposed method finally extracts the crease from the crease clusters estimated from directional images. In conclusion, applying the proposed method improved the accuracy of overall feature extraction by 91.4% by accurately and precisely extracting the crease from fingerprint image.

A Study on the Feature Extraction Using Spectral Indices from WorldView-2 Satellite Image (WorldView-2 위성영상의 분광지수를 이용한 개체 추출 연구)

  • Hyejin, Kim;Yongil, Kim;Byungkil, Lee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.363-371
    • /
    • 2015
  • Feature extraction is one of the main goals in many remote sensing analyses. After high-resolution imagery became more available, it became possible to extract more detailed and specific features. Thus, considerable image segmentation algorithms have been developed, because traditional pixel-based analysis proved insufficient for high-resolution imagery due to its inability to handle the internal variability of complex scenes. However, the individual segmentation method, which simply uses color layers, is limited in its ability to extract various target features with different spectral and shape characteristics. Spectral indices can be used to support effective feature extraction by helping to identify abundant surface materials. This study aims to evaluate a feature extraction method based on a segmentation technique with spectral indices. We tested the extraction of diverse target features-such as buildings, vegetation, water, and shadows from eight band WorldView-2 satellite image using decision tree classification and used the result to draw the appropriate spectral indices for each specific feature extraction. From the results, We identified that spectral band ratios can be applied to distinguish feature classes simply and effectively.

An Improved Feature Extraction Technique of Asterias Amurensis using 6-Directional Scanning and Centers of Region (6-방향 스캐닝과 영역 중심점을 이용한 아무르불가사리의 개선된 특징 추출 기법)

  • Shin, Hyun-Deok;Chu, Ran-Heui
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.67-75
    • /
    • 2013
  • Korea has developed coastal farming industry due to the environmental characteristics that its three sides are surrounded by sea. The damage of coastal farming industry caused by Asterias Amurensis with very strong reproductive rate and predaciousness has increased sharply every year. Moreover, Asterias Amurensis preys on living fish and shellfish and so the damage of fishermen is vern greater. In this paper, a method is proposed to extract effectively the features from the image of Asterias Amurensis acquired in the water. Because the proposed method extracts convex features using 6-directional scanning, it selects a fewer number of feature candidates than the conventional one. In addition, after selecting candidate concave points using the extracted convex features and centers of region, the final concave features are extracted. Due to the features of the starfish which lives in groups, individuals of the starfish in the input image are concentrated. Thus, it is significant to minimize the number of feature candidates extracted from the input image. The experimental results indicate an improvement of the proposed feature extraction method over the conventional one as evidenced by the fact that the feature extract was 88 % of the feature candidates.

Enhanced Extraction of Traversable Region by Combining Scene Clustering with 3D World Modeling based on CCD/IR Image (CCD/IR 영상 기반의 3D 월드모델링과 클러스터링의 통합을 통한 주행영역 추출 성능 개선)

  • Kim, Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.107-115
    • /
    • 2008
  • Accurate extraction of traversable region is a critical issue for autonomous navigation of unmanned ground vehicle(UGV). This paper introduces enhanced extraction of traversable region by combining scene clustering with 3D world modeling using CCD(Charge-Coupled Device)/IR(Infra Red) image. Scene clustering is developed with K-means algorithm based on CCD and IR image. 3D world modeling is developed by fusing CCD and IR stereo image. Enhanced extraction of traversable regions is obtained by combining feature of extraction with a clustering method and a geometric characteristic of terrain derived by 3D world modeling.

Efficient Markov Feature Extraction Method for Image Splicing Detection (접합영상 검출을 위한 효율적인 마코프 특징 추출 방법)

  • Han, Jong-Goo;Park, Tae-Hee;Eom, Il-Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.111-118
    • /
    • 2014
  • This paper presents an efficient Markov feature extraction method for detecting splicing forged images. The Markov states used in our method are composed of the difference between DCT coefficients in the adjacent blocks. Various first-order Markov state transition probabilities are extracted as features for splicing detection. In addition, we propose a feature reduction algorithm by analysing the distribution of the Markov probability. After training the extracted feature vectors using the SVM classifier, we determine whether the presence of the image splicing forgery. Experimental results verify that the proposed method shows good detection performance with a smaller number of features compared to existing methods.

A Study on Optimal Shape-Size Index Extraction for Classification of High Resolution Satellite Imagery (고해상도 영상의 분류결과 개선을 위한 최적의 Shape-Size Index 추출에 관한 연구)

  • Han, You-Kyung;Kim, Hye-Jin;Choi, Jae-Wan;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.145-154
    • /
    • 2009
  • High spatial resolution satellite image classification has a limitation when only using the spectral information due to the complex spatial arrangement of features and spectral heterogeneity within each class. Therefore, the extraction of the spatial information is one of the most important steps in high resolution satellite image classification. This study proposes a new spatial feature extraction method, named SSI(Shape-Size Index). SSI uses a simple region-growing based image segmentation and allocates spatial property value in each segment. The extracted feature is integrated with spectral bands to improve overall classification accuracy. The classification is achieved by applying a SVM(Support Vector Machines) classifier. In order to evaluate the proposed feature extraction method, KOMPSAT-2 and QuickBird-2 data are used for experiments. It is demonstrated that proposed SSI algorithm leads to a notable increase in classification accuracy.

Content-based Image Retrieval using Color Correlogram from a Segmented Image (분할된 영상에서의 칼라 코렐로그램을 이용한 내용기반 영상검색)

  • An, Myung-Seok;Cho, Seok-Je
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.10
    • /
    • pp.507-512
    • /
    • 2001
  • Recently, there has been studied on feature extraction method for efficient content-based image retrieval. Especially, many researchers have been studying on extracting from color information, because of its advantages. This paper proposes a feature and its extraction method based on color information in an image. The proposed method is computed from the image segmented into two parts: the complex part and the plan part. Our experiments show that the performance of the proposed method is better as compared with the original color correlogram method.

  • PDF

A Study on the Extraction of Knowledge for Image Understanding (영상이해를 위한 지식유출에 관한 연구)

  • 곽윤식;이대영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.5
    • /
    • pp.757-772
    • /
    • 1993
  • This paper describes the knowledge extraction for image understanding in knowledge based system. The current set of low level processes operate on the numerical pixel arrays, to segment the image into region and to convert the image into directional image, and to calculate feature for these regions. The current set of intermedate level processes operate on the results of earlier knowledge source to build more complex representations of the data. We have grouped into thee categories : feature based classification, geometric token relation, perceptual organization and grouping.

  • PDF

A scheme of extracting age-related wrinkle feature and skin age based on dermoscopic images (피부 현미경 영상을 통한 피부 특징 추출 및 피부 나이 도출 기법)

  • Choi, Young-Hwan;Hwang, Een-Jun
    • Journal of IKEEE
    • /
    • v.14 no.4
    • /
    • pp.332-338
    • /
    • 2010
  • Usually, mage feature extraction methods are performed as a pre-processing step in many applications including image retrieval, object recognition, and image indexing. Especially, in the image texture analysis, texture feature extraction methods attempt to increase texture contrast to make it easier to extract the texture features from the image. One of the distinct textures in microscopic skin image is the wrinkle, and its features could provide various useful information for the age-related applications. In this paper, we propose a scheme to extract age-related features from the skin images and improve its accuracy in the skin age estimation.

Reconstruction from Feature Points of Face through Fuzzy C-Means Clustering Algorithm with Gabor Wavelets (FCM 군집화 알고리즘에 의한 얼굴의 특징점에서 Gabor 웨이브렛을 이용한 복원)

  • 신영숙;이수용;이일병;정찬섭
    • Korean Journal of Cognitive Science
    • /
    • v.11 no.2
    • /
    • pp.53-58
    • /
    • 2000
  • This paper reconstructs local region of a facial expression image from extracted feature points of facial expression image using FCM(Fuzzy C-Meang) clustering algorithm with Gabor wavelets. The feature extraction in a face is two steps. In the first step, we accomplish the edge extraction of main components of face using average value of 2-D Gabor wavelets coefficient histogram of image and in the next step, extract final feature points from the extracted edge information using FCM clustering algorithm. This study presents that the principal components of facial expression images can be reconstructed with only a few feature points extracted from FCM clustering algorithm. It can also be applied to objects recognition as well as facial expressions recognition.

  • PDF