• Title/Summary/Keyword: Image Use

Search Result 6,147, Processing Time 0.038 seconds

Median modified wiener filter for improving the image quality of gamma camera images

  • Park, Chan Rok;Kang, Seong-Hyeon;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2328-2333
    • /
    • 2020
  • The filter technique was applied to noise images, as noise is the significant factor that cause poor image quality due to lower photon counting. The purpose of this study is to confirm that image quality can be improved using the median modified Wiener filter (MMWF) technique; this is achieved via a National Electrical Manufacturers Association International Electrotechnical Commission body phantom with four large spheres that are filled with the 99mTc radioisotope when evaluating the image quality. Conventional filters such as Wiener, Gaussian, and median filters were designed, and signal to noise ratio, coefficient of variation, and contrast to noise ratio were used as the evaluation parameters. The improvement in the image quality was in the following order, from the least to the highest improvement, in all cases: Wiener filter, Gaussian filter, median filter, and the MMWF technique. The results show that the image quality was improved from 20.6 to 65.5%, 7.4-40.3%, and 12.7-44.7% for the SNR, COV, and CNR values, respectively, when using the MMWF technique, compared with the use of conventional filters. In conclusion, our results demonstrated that the MMWF technique is useful for reducing the noise distribution in gamma camera images.

A Study on the 3-D Information Abstraction of object using Triangulation System (물체의 3-D 형상 복원을 위한 삼각측량 시스템)

  • Kim, Kuk-Se;Lee, Jeong-Ki;Cho, Ai-Ri;Ba, Il-Ho;Lee, Joon
    • Annual Conference of KIPS
    • /
    • 2003.05a
    • /
    • pp.409-412
    • /
    • 2003
  • The 3-D shape use to effect of movie, animation, industrial design, medical treatment service, education, engineering etc... But it is not easy to make 3-D shape from the information of 2-D image. There are two methods in restoring 3-D video image through 2-D image; First the method of using a laser; Second, the method of acquiring 3-D image through stereo vision. Instead of doing two methods with many difficulties, I study the method of simple 3-D image in this research paper. We present here a simple and efficient method, called direct calibration, which does not require any equations at all. The direct calibration procedure builds a lookup table(LUT) linking image and 3-D coordinates by a real 3-D triangulation system. The LUT is built by measuring the image coordinates of a grid of known 3-D points, and recording both image and world coordinates for each point; the depth values of all other visible points are obtained by interpolation.

  • PDF

Liver Segmentation and 3D Modeling from Abdominal CT Images

  • Tran, Hong Tai;Oh, A Ran;Na, In Seop;Kim, Soo Hyung
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.49-54
    • /
    • 2016
  • Medical image processing is a compulsory process to diagnose many kinds of disease. Therefore, an automatic algorithm for this task is highly demanded as an important part to construct a computer-aided diagnosis system. In this paper, we introduce an automatic method to segment the liver region from 3D abdominal CT images using Otsu method. First, we choose a 2D slice which has most liver information from the whole 3D image. Secondly, on the chosen slice, we enhanced the image based on its intensity using Otsu method with multiple thresholds and use the threshold to enhance the whole 3D image. Then, we apply a liver mask to mark the candidate liver region. After that, we execute the Otsu method again to segment the liver region from the chosen slice and propagate the result to the whole 3D image. Finally, we apply preprocessing on the frontal side of 3D images to crop only the liver region from the image.

Patent Image Retrieval Using SURF Direction histograms (SURF 방향 히스토그램을 이용한 특허 영상 검색)

  • Yoo, Ju-Hee;Lee, Kyoung-Mi
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.33-43
    • /
    • 2015
  • Recently, patent images are growing importance and thus patent image retrieval is a growing area of research. However, most existing patent image retrieval systems use edges extracted in the images, whose performance is affected by the quality of edge detection in the image pre-processing step. To overcome this disadvantage, we propose a SURF-based patent image retrieval method which uses the morphological characteristics of the images. The proposed method detects SURF interest points with directions and computes regional histograms. We apply the proposed method to a patent image database with 2000 binary images and we show the proposed retrieval system achieves excellent results, even when the images have some loss or degradation.

A Study on the Digital Watermarking Embedded Transmission of Still Image in Wireless Multimedia Communication Environment (무선 멀티미디어 통신 환경에서 정지영상 전송에 삽입되는 디지털 워터마킹에 관한 연구)

  • Jo, Song-Back;Lee, Yang-Sun;Kang, Heau-Jo
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.169-175
    • /
    • 2004
  • We analyzed about digital watermarking embedded transmission of still image in wireless multimedia communication environment. Also, we proposed improved watermark techniques. It effects that get in original image than method to use conventional image is less and shows robust watermark restoration ability from outside attack. Performance analysis achieved about still image and restoration of watermark information using OFDM/QPSK still image transmission system in wireless channel environment. Analysis result, VI watermark performance that influence in original image is very small. And it could know that show high restoration performance. Also, It showed superior copyright information extraction performance than image watermark in wireless channel environment of same transmission error condition.

  • PDF

Application of Deep Learning to Solar Data: 6. Super Resolution of SDO/HMI magnetograms

  • Rahman, Sumiaya;Moon, Yong-Jae;Park, Eunsu;Jeong, Hyewon;Shin, Gyungin;Lim, Daye
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.52.1-52.1
    • /
    • 2019
  • The Helioseismic and Magnetic Imager (HMI) is the instrument of Solar Dynamics Observatory (SDO) to study the magnetic field and oscillation at the solar surface. The HMI image is not enough to analyze very small magnetic features on solar surface since it has a spatial resolution of one arcsec. Super resolution is a technique that enhances the resolution of a low resolution image. In this study, we use a method for enhancing the solar image resolution using a Deep-learning model which generates a high resolution HMI image from a low resolution HMI image (4 by 4 binning). Deep learning networks try to find the hidden equation between low resolution image and high resolution image from given input and the corresponding output image. In this study, we trained a model based on a very deep residual channel attention networks (RCAN) with HMI images in 2014 and test it with HMI images in 2015. We find that the model achieves high quality results in view of both visual and measures: 31.40 peak signal-to-noise ratio(PSNR), Correlation Coefficient (0.96), Root mean square error (RMSE) is 0.004. This result is much better than the conventional bi-cubic interpolation. We will apply this model to full-resolution SDO/HMI and GST magnetograms.

  • PDF

Patch size adaptive image inpainting

  • Liu, Huaming;Lu, Guanming;Bi, Xuehui;Wang, Weilan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3642-3667
    • /
    • 2021
  • Texture synthesis technology has the advantages of repairing texture and structure at the same time. However, during the filling process, the size of the patch is fixed, and the content of the filling is not fully considered. In order to be able to adaptively change the patch size, we used the exemplar-based inpainting technique as the test algorithm, considering the image structure and texture, calculated the image structure patch size and texture patch size, and comprehensively determined the image patch size. This can adaptively change the patch size according to the filling content. In addition, we use multi-layer images to calculate the priority, so that the order of image repair was more stable. The proposed repair algorithm is compared with other image repair algorithms. The experimental results showed that the proposed adaptive image repair algorithm can better repair the texture and structure of the image, which proved the effectiveness of the proposed algorithm.

Steganographic Method on Spatial Domain Using Modular Characteristic (모듈러 특성을 이용한 공간영역 기반의 심층암호)

  • Park Young-Ran;Shin Sang-Uk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.2
    • /
    • pp.113-119
    • /
    • 2006
  • Image steganography is a secret communication method used to transmit secret messages that have been embedded into an image. To accommodate a secret message in a digital image, the original cover image is modified by the embedding algorithm. As a result, a stego image is obtained. The sender hides the secret message in a cover image that has no meaning, and then transmits the stego image to the receiver. In this paper, we propose a steganographic method based on spatial domain to embed a secret message using a difference value of two consecutive pixels and a secret quantization range. Especially, we use the modular operation for increasing of insertion information. Through experiments, we have shown that the proposed method has much mon payload capacity, average 60 percent, than some existing methods by using modular operation.

Image Retrieval Based on the Weighted and Regional Integration of CNN Features

  • Liao, Kaiyang;Fan, Bing;Zheng, Yuanlin;Lin, Guangfeng;Cao, Congjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.894-907
    • /
    • 2022
  • The features extracted by convolutional neural networks are more descriptive of images than traditional features, and their convolutional layers are more suitable for retrieving images than are fully connected layers. The convolutional layer features will consume considerable time and memory if used directly to match an image. Therefore, this paper proposes a feature weighting and region integration method for convolutional layer features to form global feature vectors and subsequently use them for image matching. First, the 3D feature of the last convolutional layer is extracted, and the convolutional feature is subsequently weighted again to highlight the edge information and position information of the image. Next, we integrate several regional eigenvectors that are processed by sliding windows into a global eigenvector. Finally, the initial ranking of the retrieval is obtained by measuring the similarity of the query image and the test image using the cosine distance, and the final mean Average Precision (mAP) is obtained by using the extended query method for rearrangement. We conduct experiments using the Oxford5k and Paris6k datasets and their extended datasets, Paris106k and Oxford105k. These experimental results indicate that the global feature extracted by the new method can better describe an image.

A Study on the Training Methodology of Combining Infrared Image Data for Improving Place Classification Accuracy of Military Robots (군 로봇의 장소 분류 정확도 향상을 위한 적외선 이미지 데이터 결합 학습 방법 연구)

  • Donggyu Choi;Seungwon Do;Chang-eun Lee
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.293-298
    • /
    • 2023
  • The military is facing a continuous decrease in personnel, and in order to cope with potential accidents and challenges in operations, efforts are being made to reduce the direct involvement of personnel by utilizing the latest technologies. Recently, the use of various sensors related to Manned-Unmanned Teaming and artificial intelligence technologies has gained attention, emphasizing the need for flexible utilization methods. In this paper, we propose four dataset construction methods that can be used for effective training of robots that can be deployed in military operations, utilizing not only RGB image data but also data acquired from IR image sensors. Since there is no publicly available dataset that combines RGB and IR image data, we directly acquired the dataset within buildings. The input values were constructed by combining RGB and IR image sensor data, taking into account the field of view, resolution, and channel values of both sensors. We compared the proposed method with conventional RGB image data classification training using the same learning model. By employing the proposed image data fusion method, we observed improved stability in training loss and approximately 3% higher accuracy.