• Title/Summary/Keyword: Image Post Processing

Search Result 340, Processing Time 0.038 seconds

A Study on Two-Dimensional Variational Mode Decomposition Applied to Electrical Resistivity Tomography

  • Sanchez, Felipe Alberto Solano;Khambampati, Anil Kumar;Kim, Kyung Youn
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.475-482
    • /
    • 2022
  • Signal pre-processing and post-processing are some areas of study around electrical resistance tomography due to the low spatial resolution of pixel-based reconstructed images. In addition, methods that improve integrity and noise reduction are candidates for application in ERT. Lately, formulations of image processing methods provide new implementations and studies to improve the response against noise. For example, compact variational mode decomposition has recently shown good performance in image decomposition and segmentation. The results from this first approach of C-VMD to ERT show an improvement due to image segmentation, providing filtering of noise in the background and location of the target.

A Study on Additional Processing Processes for Learning Multiple-input Images and Improving Inference Efficiency in Deep Learning (딥러닝의 다수 입력 이미지 학습 및 추론 효율 향상을 위해 추가적인 처리 프로세스 연구)

  • Choi, Donggyu;Kim, Minyoung;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.44-46
    • /
    • 2021
  • Many cameras are used in real life, and they are often used for monitoring and crime prevention to check the situation of problems beyond just taking pictures for memories. Such surveillance and prevention are generally used only for simple storage, and in systems utilizing multiple cameras, utilizing additional features would require additional hardware specifications. In this paper, we add image input methods and post-object processing processes to process multiple image inputs from one hardware or server that perform object detection systems that deviate from typical image processing. The performance of the method is utilized in both learning and reasoning of the hardware performing deep learning, and allows improved image processing processes to be performed.

  • PDF

Post-Processing of High-Speed Video-Laryngoscopic Images to Two-Dimensional Scanning Digital Kymographic Images (초고속 후두내시경 영상을 이용한 평면 스캔 비디오카이모그래피 영상 생성)

  • Cha, Wonjae;Wang, Soo-Geun;Jang, Jeon Yeob;Kim, Geun-Hyo;Lee, Yeon-Woo
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.28 no.2
    • /
    • pp.89-95
    • /
    • 2017
  • Background and Objectives : High-speed videolaryngoscopy (HSV) is the only technique that captures the true intra-cycle vibratory behavior of the vocal folds by capturing full images of the vocal folds. However, it has problems of no immediate feedback during examination, considerable waiting time for digital kymography (DKG), recording duration limited to a few seconds, and extreme demands for storage space. Herein, we demonstrate a new post-processing method that converts HSV images to two-dimensional digital kymography (2D-DKG) images, which adopts the algorithm of 2D videokymography (2D VKG). Materials and Methods : HSV system was used to capture images of vocal folds. HSV images were post-processed in Kay image-process software (KIPS), and conventional DKG images were retrieved. Custom-made post-processing system was used to convert HSV images to 2D-DKG images. The quantitative parameters of the post-processed 2D-DKG images was validated by comparing these parameters with those of the DKG images. Results : Serial HSV images for all phases of vocal fold vibratory movement are included. The images were converted by the scanning method using U-medical image-process software. Similar to conventional DKG, post-processed 2D DKG image from the HSV image can provide quantitative information on vocal fold mucosa vibration, including the various vibratory phases. Differences in amplitude symmetry index, phase symmetry index, open quotient, and close quotient between 2D-DKG and DKG were analyzed. There were no statistical differences between the quantitative parameters of vocal fold vibratory movement in 2D-DKG and DKG. Conclusion : The post-processing method of converting HSV images to 2D DKG images could provide clinical information and storage economy.

  • PDF

Effect of High Tube Voltage and Scatter Ray Post-processing Software on Image Quality and Radiation Dose During Chest Anteroposterior Radiography (흉부 전·후방향 검사 시 고관전압 및 산란선 후처리 소프트웨어 적용이 화질과 선량에 미치는 영향)

  • Kim, Jong-Seok;Joo, Young-Cheol;Lee, Seung-Keun
    • Journal of radiological science and technology
    • /
    • v.44 no.4
    • /
    • pp.295-300
    • /
    • 2021
  • This study aims to present new chest AP examination exposure conditions through a study on the effect on image quality and patient dose by applying high tube voltage and scatter ray post-processing software during chest AP examination in digital radiography equipment. This study was used a human body phantom and in the chest AP position, the dosimeter was placed horizontally at the thoracic spine 6. The experiment was conducted by dividing into a low tube voltage (70 kVp, 400 mA, 3.2 mAs) group and a high tube voltage (100 kVp, 400 mA, 1.2 mAs) group. The collimation size (14″× 17″) and the source to image receptor distance(110 cm) were same applied to both groups. Radiation dose was presented to dose area product and entrance surface dose. Image quality was compared and analyzed by comparing the difference between the signal-to-noise ratio and the contrast-to-noise ratio of the image according to the application of the scatter ray post-processing software under each condition. The average value of the entrance surface dose in the low and high tube voltage conditions was 93.04±0.45 µGy and 94.25±1.51 µGy, which was slightly higher in the high tube voltage condition, but the dose area product was 0.97±0.04 µGy and 0.93±0.01 µGy. There was a statistically significant difference in the group mean value(p<0.01). In terms of image quality, the values of the signal-to-noise ratio and the contrast noise ratio were higher in the high tube voltage than in the low tube voltage, and decreased when the scattering line post-processing function was used, but the contrast resolution was improved. If there is a scatter ray post-processing function during chest AP examination, it is helpful to actively utilize it to improve the image quality. However, when this function is not available, I thought that applying a higher tube voltage state than a low tube voltage state will help to realize images with a large amount of information without changing the dose.

An Implementation of the $5\times5$ CNN Hardware and the Pre.Post Processor ($5\times5$ CNN 하드웨어 및 전.후 처리기 구현)

  • Kim Seung-Soo;Jeon Heung-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.865-870
    • /
    • 2006
  • The cellular neural networks have shown a vast computing power for the image processing in spite of the simplicity of its structure. However, it is impossible to implement the CNN hardware which would require the same enormous amount of cells as that of the pixels involved in the practical large image. In this parer, the $5\times5$ CNN hardware and the pre post processor which can be used for processing the real large image with a time-multiplexing scheme are implemented. The implemented $5\times5$ CNN hardware and pre post processor is applied to the edge detection of $256\times256$ lena image to evaluate the performance. The total number of block. By the time-multiplexing process is about 4,000 blocks and to control pulses are needed to perform the pipelined operation or the each block. By the experimental resorts, the implemented $5\times5$ CNN hardware and pre post processor can be used to the real large image processing.

Post-filtering in Low Bit Rate Moving Picture Coding, and Subjective and Objective Evaluation of Post-filtering (저 전송률 동화상 압축에서 후처리 방법 및 후처리 방법의 주관적 객관적 평가)

  • 이영렬;김윤수;박현욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8B
    • /
    • pp.1518-1531
    • /
    • 1999
  • The reconstructed images from highly compressed MPEG or H.263 data have noticeable image degradations, such as blocking artifacts near the block boundaries, corner outliers at cross points of blocks, and ringing noise near image edges, because the MPEG or H.263 quantizes the transformed coefficients of 8$\times$8 pixel blocks. A post-processing algorithm has been proposed by authors to reduce quantization effects, such as blocking artifacts, corner outliers, and ringing noise, in MPEG-decompressed images. Our signal-adaptive post-processing algorithm reduces the quantization effects adaptively by using both spatial frequency and temporal information extracted from the compressed data. The blocking artifacts are reduced by one-dimensional (1-D) horizontal and vertical low pass filtering (LPF), and the ringing noise is reduced by two-dimensional (2-D) signal-adaptive filtering (SAF). A comparison study of the subjective quality evaluation using modified single stimulus method (MSSM), the objective quality evaluation (PSNR) and the computation complexity analysis between the signal-adaptive post-processing algorithm and the MPEG-4 VM (Verification Model) post-processing algorithm is performed by computer simulation with several MPEG-4 image sequences. According to the comparison study, the subjective image qualities of both algorithms are similar, whereas the PSNR and the comparison complexity analysis of the signal-adaptive post-processing algorithm shows better performance than the VM post-processing algorithm.

  • PDF

Algorithm for Discrimination of Brown Rice Kernels Using Machine Vision

  • C.S. Hwang;Noh, S.H.;Lee, J.W.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.823-833
    • /
    • 1996
  • An ultimate purpose of this study is to develop an automatic brown rice quality inspection system using image processing technique. In this study emphasis was put on developing an algorithm for discriminating the brown rice kernels depending on their external quality with a color image processing system equipped with an adaptor for magnifying the input image and optical fiber for oblique illumination. Primarily , geometrical and optical features of sample images were analyzed with unhulled paddy and various brown rice kernel samples such as sound, cracked, green-transparent , green-opaque, colored, white-opaque and brokens. Secondary, an algorithm for discrimination of the rice kernels in static state was developed on the basis of the geometrical and optical parameters screened by a statistical analysis(STEPWISE and DISCRIM Procedure, SAS ver.6). Brown rice samples could be discriminated by the algorithm developed in this study with an accuracy of 90% to 96% for the sound , cracked, colored, broken and unhulled , about 81% for the green-transparent and the white-opaque and about 75% for the green-opaque, respectively. A total computing time required for classification was about 100 seconds/1000 kernels with the PC 80486-DX2, 66MHz.

  • PDF

Abdominal Digital Radiography with a Novel Post-Processing Technique: Phantom and Patient Studies (새로운 후처리 기술을 이용한 복부 디지털 방사선 촬영: 팬텀과 환자 연구)

  • Hyein Kang;Eun Sun Lee;Hyun Jeong Park;Byung Kwan Park;Jae Yong Park;Suk-Won Suh
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.4
    • /
    • pp.920-932
    • /
    • 2020
  • Purpose The aim of this study was to evaluate the diagnostic image quality of low dose abdominal digital radiography processed with a new post-processing technique. Materials and Methods Abdominal radiographs from phantom pilot studies were post-processed by the novel and conventional post-processing methods of our institution; the proper dose for the subsequent patient study of 49 subjects was determined by comparing image quality of the two preceding studies. Two radiographs of each patient were taken using the conventional and derived dose protocols with the proposed post-processing method. The image details and quality were evaluated by two radiologists. Results The radiation dose for the patient study was derived to be half of the conventional method. Overall half-dose image quality with the proposed method was significantly higher than that of the conventional method (p < 0.05) with moderate inter-rater agreement (κ = 0.60, 0.47). Conclusion By applying the new post-processing technique, half-dose abdominal digital radiography can demonstrate feasible image quality compared to the full-dose images.

Adaptation of Wavelet Algorithm for Obtaining a Human Brain's Function Map (뇌의 기능적 영역 추출을 위한 Wavelet 변환 알고리즘의 적용)

  • 이상민;장두봉;김동희;김광열;이건기;신태민
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.203-206
    • /
    • 2001
  • The fMRI which can express the function of brain as MR image is now being studied. The study on the functional image has usually been performed with the MRI in 4 tesla class in goneral, but if gradient echo imaging method could be used, it might make the most of what it has with the MRI in 1.5 tesla class. However, the lack of adequate image post-processing software prevents it from being used as widely as it could be. For the image post-processing algorithm of the functional image, subtraction method and several statistical methods are used with continuous introduction of new method recently. In this paper, we suggest adaptation of wavelet algorithm for obtaining a more reliable brain function map.

  • PDF

Character Region Extraction of Monumental Inscription Image Using Boundary Information (윤곽선 정보를 이용한 금석문 영상의 글자 영역 추출)

  • 최호형;박영식;김기석
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.118-121
    • /
    • 2002
  • The study on shilla monumental inscription has been accomplished by many historians. However, the research on segmentation of monumental inscription image using digital image processing is not sufficient for restoration of the image. Although, many image processing methods have been proposed for region extraction in still image, there is no suitable method for accurate interpretation of monumental inscription image. To distinguish foreground and background region in the image, this paper presents new segmentation algorithm composed of contrast adjustment and median filtering, thresholding and sobel operation, as pre-processing and post-processing. The result show that background and foreground regions are segmented in monumental inscription image.

  • PDF