DOI QR코드

DOI QR Code

Abdominal Digital Radiography with a Novel Post-Processing Technique: Phantom and Patient Studies

새로운 후처리 기술을 이용한 복부 디지털 방사선 촬영: 팬텀과 환자 연구

  • Received : 2019.07.13
  • Accepted : 2019.10.18
  • Published : 2020.07.01

Abstract

Purpose The aim of this study was to evaluate the diagnostic image quality of low dose abdominal digital radiography processed with a new post-processing technique. Materials and Methods Abdominal radiographs from phantom pilot studies were post-processed by the novel and conventional post-processing methods of our institution; the proper dose for the subsequent patient study of 49 subjects was determined by comparing image quality of the two preceding studies. Two radiographs of each patient were taken using the conventional and derived dose protocols with the proposed post-processing method. The image details and quality were evaluated by two radiologists. Results The radiation dose for the patient study was derived to be half of the conventional method. Overall half-dose image quality with the proposed method was significantly higher than that of the conventional method (p < 0.05) with moderate inter-rater agreement (κ = 0.60, 0.47). Conclusion By applying the new post-processing technique, half-dose abdominal digital radiography can demonstrate feasible image quality compared to the full-dose images.

목적 새로운 후처리 기술로 처리된 저선량 복부 디지털 방사선 영상의 진단능을 평가하기 위해 이 연구를 진행하게 되었다. 대상과 방법 팬텀과 파일럿 스터디에서 촬영된 복부 방사선 영상을 본 의료기관의 기존 및 새롭게 제시된 후처리 기술을 이용해 처리한 뒤 영상의 질을 비교하였다. 이후 시행된 45명의 환자 연구에 이용된 선량은 앞선 두 연구로부터 도출되었다. 한 환자당 두 장의 복부 방사선영상이 기존 및 도출된 선량으로 촬영되었고 제시된 후처리 기술로 처리되었다. 영상의 세부사항과 질을 두 명의 영상의학과 의사가 평가하였다. 결과 환자 연구에 이용된 선량은 기존 선량의 절반이었다. 제시된 후처리 기술을 이용해 처리된 절반의 선량으로 촬영된 영상들의 전체 영상 질은 기존 선량으로 촬영된 영상들에 비해 유의미하게 높았고(p < 0.05) 중등도의 평가자 간 일치도를 보였다(κ = 0.60, 0.47). 결론 새로운 후처리 기술을 적용함으로써, 절반의 선량으로 촬영된 복부 디지털 방사선 영상은 기존의 전체 선량을 이용한 영상과 비교했을 때 비견될 만한 영상의 질을 보였다.

Keywords

Acknowledgement

This work was supported by Samsung Electronics Co., Ltd., Suwon-si, Korea (grant number: CAUH-20160151). Grants were used to pay for transportation expenses of enrolled patients and labor cost provided to co-authors who participated in the image evaluation during the study.

References

  1. Williams MB, Krupinski EA, Strauss KJ, Breeden WK 3rd, Rzeszotarski MS, Applegate K, et al. Digital radiography image quality: image acquisition. J Am Coll Radiol 2007;4:371-388 https://doi.org/10.1016/j.jacr.2007.02.002
  2. Busch HP, Faulkner K. Image quality and dose management in digital radiography: a new paradigm for optimisation. Radiat Prot Dosimetry 2005;117:143-147 https://doi.org/10.1093/rpd/nci728
  3. Neitzel U, Maack I, Gunther-Kohfahl S. Image quality of a digital chest radiography system based on a selenium detector. Med Phys 1994;21:509-516 https://doi.org/10.1118/1.597389
  4. International Commission on Radiological Protection. Managing patient dose in digital radiology. A report of the International Commission on Radiological Protection. Ann ICRP 2004;34:1-73
  5. Korner M, Weber CH, Wirth S, Pfeifer KJ, Reiser MF, Treitl M. Advances in digital radiography: physical principles and system overview. Radiographics 2007;27:675-686 https://doi.org/10.1148/rg.273065075
  6. Precht H, Gerke O, Rosendahl K, Tingberg A, Waaler D. Digital radiography: optimization of image quality and dose using multi-frequency software. Pediatr Radiol 2012;42:1112-1118 https://doi.org/10.1007/s00247-012-2385-3
  7. Lee KH, Kwon JW, Yoon YC, Choi SH, Jung JY, Kim JH, et al. Slot-scan digital radiography of the lower extremities: a comparison to computed radiography with respect to image quality and radiation dose. Korean J Radiol 2009;10:51-57 https://doi.org/10.3348/kjr.2009.10.1.51
  8. Precht H, Tingberg A, Waaler D, Outzen CB. New developed DR detector performs radiographs of hand, pelvic and premature chest anatomies at a lower radiation dose and/or a higher image quality. J Digit Imaging 2014;27:68-76 https://doi.org/10.1007/s10278-013-9635-2
  9. Myers KJ, Barrett HH, Borgstrom MC, Patton DD, Seeley GW. Effect of noise correlation on detectability of disk signals in medical imaging. J Opt Soc Am A 1985;2:1752-1759 https://doi.org/10.1364/JOSAA.2.001752
  10. Egbe NO, Heaton B, Sharp PF. Application of a simple phantom in assessing the effects of dose reduction on image quality in chest radiography. Radiography 2010;16:108-114 https://doi.org/10.1016/j.radi.2009.09.007
  11. Kawashima H, Ichikawa K, Nagasou D, Hattori M. X-ray dose reduction using additional copper filtration for abdominal digital radiography: evaluation using signal difference-to-noise ratio. Phys Med 2017;34:65-71 https://doi.org/10.1016/j.ejmp.2017.01.015
  12. Matrecano M, Poggi G, Verdoliva L. Improved BM3D for correlated noise removal. VISAPP 2012;1:129-134
  13. Liu YL, Wang J, Chen X, Guo YW, Peng QS. A robust and fast non-local means algorithm for image denoising. J Comput Sci Technol 2008;23:270-279 https://doi.org/10.1007/s11390-008-9129-8
  14. Buades A, Coll B, Morel JM. A review of image denoising algorithms, with a new one. Multiscale Model Sim 2005;4:490-530 https://doi.org/10.1137/040616024
  15. Neitzel U. Management of pediatric radiation dose using Philips digital radiography. Pediatr Radiol 2004;34 Suppl 3:S227-233; discussion S234-241 https://doi.org/10.1007/s00247-004-1274-9
  16. Uffmann M, Schaefer-Prokop C. Digital radiography: the balance between image quality and required radiation dose. Eur J Radiol 2009;72:202-208 https://doi.org/10.1016/j.ejrad.2009.05.060
  17. Stahl M, Aach T, Dippel S. Digital radiography enhancement by nonlinear multiscale processing. Med Phys 2000;27:56-65 https://doi.org/10.1118/1.598857
  18. Prokop M, Neitzel U, Schaefer-Prokop C. Principles of image processing in digital chest radiography. J Thorac Imaging 2003;18:148-164 https://doi.org/10.1097/00005382-200307000-00004
  19. Willis CE. Computed radiography: a higher dose? Pediatr Radiol 2002;32:745-750; discussion 751-754 https://doi.org/10.1007/s00247-002-0804-6