• Title/Summary/Keyword: Image Edge

Search Result 2,465, Processing Time 0.024 seconds

Detection and Recognition of Vehicle License Plates using Deep Learning in Video Surveillance

  • Farooq, Muhammad Umer;Ahmed, Saad;Latif, Mustafa;Jawaid, Danish;Khan, Muhammad Zofeen;Khan, Yahya
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.121-126
    • /
    • 2022
  • The number of vehicles has increased exponentially over the past 20 years due to technological advancements. It is becoming almost impossible to manually control and manage the traffic in a city like Karachi. Without license plate recognition, traffic management is impossible. The Framework for License Plate Detection & Recognition to overcome these issues is proposed. License Plate Detection & Recognition is primarily performed in two steps. The first step is to accurately detect the license plate in the given image, and the second step is to successfully read and recognize each character of that license plate. Some of the most common algorithms used in the past are based on colour, texture, edge-detection and template matching. Nowadays, many researchers are proposing methods based on deep learning. This research proposes a framework for License Plate Detection & Recognition using a custom YOLOv5 Object Detector, image segmentation techniques, and Tesseract's optical character recognition OCR. The accuracy of this framework is 0.89.

Study on 2D Sprite *3.Generation Using the Impersonator Network

  • Yongjun Choi;Beomjoo Seo;Shinjin Kang;Jongin Choi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.7
    • /
    • pp.1794-1806
    • /
    • 2023
  • This study presents a method for capturing photographs of users as input and converting them into 2D character animation sprites using a generative adversarial network-based artificial intelligence network. Traditionally, 2D character animations have been created by manually creating an entire sequence of sprite images, which incurs high development costs. To address this issue, this study proposes a technique that combines motion videos and sample 2D images. In the 2D sprite generation process that uses the proposed technique, a sequence of images is extracted from real-life images captured by the user, and these are combined with character images from within the game. Our research aims to leverage cutting-edge deep learning-based image manipulation techniques, such as the GAN-based motion transfer network (impersonator) and background noise removal (U2 -Net), to generate a sequence of animation sprites from a single image. The proposed technique enables the creation of diverse animations and motions just one image. By utilizing these advancements, we focus on enhancing productivity in the game and animation industry through improved efficiency and streamlined production processes. By employing state-of-the-art techniques, our research enables the generation of 2D sprite images with various motions, offering significant potential for boosting productivity and creativity in the industry.

Standardization Research on Drone Image Metadata in the Agricultural Field (농업분야 드론영상 메타데이터 표준화 연구)

  • Won-Hui Lee;Seung-Hun Bae;Jin Kim;Young Jae Lee;Keo Bae Lim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.293-302
    • /
    • 2023
  • This study examines and proposes standardization approaches to address the heterogeneous issues of metadata in drone imagery within the agricultural sector. Image metadata comes in various formats depending on different camera manufacturers, with most utilizing EXIF and XMP. The metadata of cameras used in fixed-wing and rotary-wing platforms, along with the metadata requirements in image alignment software, were analyzed for sensors like DJI XT2, MicaSense RedEdge-M, and Sentera Double4K. In the agricultural domain, multispectral imagery is crucial for vegetation analysis, making the provision of such imagery essential. Based on Pix4D SW, a comparative analysis of metadata attributes was performed, and necessary elements were compiled and presented as a proposed standardization (draft) in the form of tag information.

Multi-scale context fusion network for melanoma segmentation

  • Zhenhua Li;Lei Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1888-1906
    • /
    • 2024
  • Aiming at the problems that the edge of melanoma image is fuzzy, the contrast with the background is low, and the hair occlusion makes it difficult to segment accurately, this paper proposes a model MSCNet for melanoma segmentation based on U-net frame. Firstly, a multi-scale pyramid fusion module is designed to reconstruct the skip connection and transmit global information to the decoder. Secondly, the contextural information conduction module is innovatively added to the top of the encoder. The module provides different receptive fields for the segmented target by using the hole convolution with different expansion rates, so as to better fuse multi-scale contextural information. In addition, in order to suppress redundant information in the input image and pay more attention to melanoma feature information, global channel attention mechanism is introduced into the decoder. Finally, In order to solve the problem of lesion class imbalance, this paper uses a combined loss function. The algorithm of this paper is verified on ISIC 2017 and ISIC 2018 public datasets. The experimental results indicate that the proposed algorithm has better accuracy for melanoma segmentation compared with other CNN-based image segmentation algorithms.

Skew Compensation and Text Extraction of The Traffic Sign in Natural Scenes (자연영상에서 교통 표지판의 기울기 보정 및 덱스트 추출)

  • Choi Gyu-Dam;Kim Sung-Dong;Choi Ki-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.2 s.5
    • /
    • pp.19-28
    • /
    • 2004
  • This paper shows how to compensate the skew from the traffic sign included in the natural image and extract the text. The research deals with the Process related to the array image. Ail the process comprises four steps. In the first fart we Perform the preprocessing and Canny edge extraction for the edge in the natural image. In the second pan we perform preprocessing and postprocessing for Hough Transform in order to extract the skewed angle. In the third part we remove the noise images and the complex lines, and then extract the candidate region using the features of the text. In the last part after performing the local binarization in the extracted candidate region, we demonstrate the text extraction by using the differences of the features which appeared between the tett and the non-text in order to select the unnecessary non-text. After carrying out an experiment with the natural image of 100 Pieces that includes the traffic sign. The research indicates a 82.54 percent extraction of the text and a 79.69 percent accuracy of the extraction, and this improved more accurate text extraction in comparison with the existing works such as the method using RLS(Run Length Smoothing) or Fourier Transform. Also this research shows a 94.5 percent extraction in respect of the extraction on the skewed angle. That improved a 26 percent, compared with the way used only Hough Transform. The research is applied to giving the information of the location regarding the walking aid system for the blind or the operation of a driverless vehicle

  • PDF

Automatic Boundary Detection of Carotid Intima-Media based on Multiresolution Snake (다해상도 스네이크를 통한 경동맥 내막-중막 경계선 자동추출)

  • Lee, Yu-Bu;Choi, Yoo-Joo;Kim, Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.14A no.2
    • /
    • pp.77-84
    • /
    • 2007
  • The intima media thickness(IMT) of the carotid artery from B mode ultrasound images has recently been proposed as the most useful index of individual atherosclerosis and can be used to predict major cardiovascular events. Ultrasonic measurements of the IMT are conventionally obtained by manually tracing interfaces between tissue layers. The drawbacks of this method are the inter and intra observer variability and its inefficiency. In this paper, we present a multiresolution snake method combined with the dynamic programming, which overcomes the various noises and sensitivity to initialization of conventional snake. First, an image pyramid is constructed using the Gaussian pyramid that maintains global edge information with smoothing in the images, and then the boundaries are automatically detected in the lowest resolution level by minimizing a cost function based on dynamic programming. The cost function includes cost terms which are representing image features and geometrical continuity of the vessel interfaces. Since the detected boundaries are selected as initial contour of the snake for the next level, this automated approach solves the problem of the initialization. Moreover, the proposed snake improves the problem of converging th the local minima by defining the external energy based on multiple image features. In this paper, our method has been validated by computing the correlation between manual and automatic measurements. This automated detection method has obtained more accurate and reproducible results than conventional edge detection by considering multiple image features.

Inspection System using CIELAB Color Space for the PCB Ball Pad with OSP Surface Finish (OSP 표면처리된 PCB 볼 패드용 CIELAB 색좌표 기반 검사 시스템)

  • Lee, Han-Ju;Kim, Chang-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.15-19
    • /
    • 2015
  • We demonstrated an inspection system for detecting discoloration of PCB Cu ball pad with an OSP surface finish. Though the OSP surface finish has many advantages such as eco-friendly and low cost, however, it often shows a discoloration phenomenon due to a heating process. In this study, the discoloration was analyzed with device-independent CIELAB color space. First of all, the PCB samples were inspected with standard lamps and CCD camera. The measured data was processed with Labview program for detecting discoloration of Cu ball pad. From the original PCB sample image, the localized Cu ball pad image was selected to reduce the image size by the binarization and edge detection processes and it was also converted to device-independent CIELAB color space using $3{\times}3$ conversion matrix. Both acquisition time and false acceptance rate were significantly reduced with this proposed inspection system. In addition, $L^*$ and $b^*$ values of CIELAB color space were suitable for inspection of discoloration of Cu ball pad.

A High Performance License Plate Recognition System (고속처리 자동차 번호판 인식시스템)

  • 남기환;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1352-1357
    • /
    • 2002
  • This Paper describes algorithm to extract license plates in vehicle images. Conventional methods perform preprocessing on the entire vehicle image to produce the edge image and binarize it. Hough transform is applied to the binary image to find horizontal and vertical lines, and the license plate area is extracted using the characteristics of license plates. Problems with this approach are that real-time processing is not feasible due to long processing time and that the license plate area is not extracted when lighting is irregular such as at night or when the plate boundary does not show up in the image. This research uses the gray level transition characteristics of license plates to verify the digit area by examining the digit width and the level difference between the background area the digit area, and then extracts the plate area by testing the distance between the verified digits. This research solves the problem of failure in extracting the license plates due to degraded plate boundary as in the conventional methods and resolves the problem of the time requirement by processing the real time such that practical application is possible. This paper Presents a power automated license plate recognition system, which is able to read license numbers of cars, even under circumstances, which are far from ideal. In a real-life test, the percentage of rejected plates wan 13%, whereas 0.4% of the plates were misclassified. Suggestions for further improvements are given.

Object Detection Algorithm Using Edge Information on the Sea Environment (해양 환경에서 에지 정보를 이용한 물표 추출 알고리즘)

  • Jeong, Jong-Myeon;Park, Gyei-Kark
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.9
    • /
    • pp.69-76
    • /
    • 2011
  • According to the related reports, about 60 percents of ship collisions have resulted from operating mistake caused by human factor. Specially, the report said that negligence of observation caused 66.8 percents of the accidents due to a human factor. Hence automatic detection and tracking of an object from an IR images are crucial for safety navigation because it can relieve officer's burden and remedies imperfections of human visual system. In this paper, we present a method to detect an object such as ship, rock and buoy from a sea IR image. Most edge directions of the sea image are horizontal and most vertical edges come out from the object areas. The presented method uses them as a characteristic for the object detection. Vertical edges are extracted from the input image and isolated edges are eliminated. Then morphological closing operation is performed on the vertical edges. This caused vertical edges that actually compose an object be connected and become an object candidate region. Next, reference object regions are extracted using horizontal edges, which appear on the boundaries between surface of the sea and the objects. Finally, object regions are acquired by sequentially integrating reference region and object candidate regions.

Extraction of Waterline Using Low Altitude Remote Sensing (저고도 원격탐사 영상 분석을 통한 수륙경계선 추출)

  • Jung, Dawoon;Lee, Jong-Seok;Baek, Ji-Yeon;Jo, Young-Heon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.337-349
    • /
    • 2020
  • In this study, Helikite, Low Altitude Remote Sensing (LARS) platform, was used to acquire coastal images. In the obtained image, the land and water masses were divided using four types of region clustering algorithms, and then waterline was extracted using edge detection. Quantitative comparisons were not possible due to the lack of in-situ waterline data. But, based on the image of the infrared band where water masses and land are relatively clear, the waterlines extracted by each algorithm were compared. As a result, it was found that each algorithm differed significantly in the part where the distinction between water masses and land was ambiguous. This is considered to be a difference in the process of selecting the threshold value of the digital number that each algorithm uses to distinguish the regions. The extraction of waterlines through various algorithms is expected to be used in conjunction with a Low Altitude Remote Sensing system that can be continuously monitored in the future to explain the rapid changes in coastal shape through several years of long-term data from fixed areas.