Abstract
The intima media thickness(IMT) of the carotid artery from B mode ultrasound images has recently been proposed as the most useful index of individual atherosclerosis and can be used to predict major cardiovascular events. Ultrasonic measurements of the IMT are conventionally obtained by manually tracing interfaces between tissue layers. The drawbacks of this method are the inter and intra observer variability and its inefficiency. In this paper, we present a multiresolution snake method combined with the dynamic programming, which overcomes the various noises and sensitivity to initialization of conventional snake. First, an image pyramid is constructed using the Gaussian pyramid that maintains global edge information with smoothing in the images, and then the boundaries are automatically detected in the lowest resolution level by minimizing a cost function based on dynamic programming. The cost function includes cost terms which are representing image features and geometrical continuity of the vessel interfaces. Since the detected boundaries are selected as initial contour of the snake for the next level, this automated approach solves the problem of the initialization. Moreover, the proposed snake improves the problem of converging th the local minima by defining the external energy based on multiple image features. In this paper, our method has been validated by computing the correlation between manual and automatic measurements. This automated detection method has obtained more accurate and reproducible results than conventional edge detection by considering multiple image features.
경동맥 B 모드 초음파영상에서 내막 중막 두께(IMT: Intima-Media Thickness)는 죽상경화증의 조기 표식자로 뇌졸중과 심혈관 질환의 예측을 위해 널리 사용되고 있으며 대부분 수동측정에 의존한다. 그러나 잡음의 제약성을 가진 초음파영상에서 내막 중막 경계선의 수동추적을 통한 측정은 관찰자 간, 동일 관찰자 내 그 결과가 달라지는 변이성과 비효율성의 문제점을 갖는다. 본 연구에서는 초음파영상이 갖는 잡음의 제약성을 극복하고 전형적인 스네이크의 초기 윤곽선 의존성 문제를 해결하기 위해 다이나믹 프로그래밍을 결합한 다해상도 스네이크 자동추출기법을 제안한다. 제안한 방법은 우선 잡음을 제거하면서 영상의 전역적인 형태정보 유지가 가능한 가우시안 피라미드를 이용하여 영상 피라미드를 구축한다. 다음으로 가장 낮은 해상도 영역에서 다이나믹 프로그래밍을 기반으로 경계선의 다중영상특징 및 연속성을 고려한 평가항을 포함하는 평가함수 최소화 과정을 수행함으로써 경계선을 자동으로 추출한다. 자동으로 추출된 경계선은 다음 레벨 영상에서 수행되는 스네이크의 초기 윤곽선으로 지정됨으로써 초기 윤곽선의 의존성 문제를 해결한다. 또한, 스네이크 수행 시 잡음에 민감하여 실제 경계가 아닌 지역적 최소점(local minima)에 수렴할 수 있는 문제를 개선하기 위해 다중 영상특성을 고려한 외부에너지를 정의하였다. 본 연구에서는 제안분할기법의 정확도 검증을 위해 자동 추출된 경계선 두께측정과 임상 전문가에 의한 수동측정 결과의 상관관계(correlation)를 계산한다. 제안된 자동추출 알고리즘은 일반적인 에지 추출알고리즘보다 더욱 정확하고 재생산 가능한 결과를 제공함으로써 효율적인 자동측정이 가능하게 한다.