• Title/Summary/Keyword: IT-management Service

Search Result 8,302, Processing Time 0.044 seconds

Changing Trends of Climatic Variables of Agro-Climatic Zones of Rice in South Korea (벼 작물 농업기후지대의 연대별 기후요소 변화 특성)

  • Jung, Myung-Pyo;Shim, Kyo-Moon;Kim, Yongseok;Kim, Seok-Cheol;So, Kyu-Ho
    • Journal of Climate Change Research
    • /
    • v.5 no.1
    • /
    • pp.13-19
    • /
    • 2014
  • In the past, Korea agro-climatic zone except Jeju-do was classified into nineteen based on rice culture by using air temperature, precipitation, and sunshine duration etc. during rice growing periods. It has been used for selecting safety zone of rice cultivation and countermeasures to meteorological disasters. In this study, the climatic variables such as air temperature, precipitation, and sunshine duration of twenty agro-climatic zones including Jeju-do were compared decennially (1970's, 1980's, 1990's, and 2000's). The meteorological data were obtained in Meteorological Information Portal Service System-Disaster Prevention, Korea Meteorological Administration. The temperature of 1970s, 1980s, 1990s, and 2000s were $12.0{\pm}0.14^{\circ}C$, $11.9{\pm}0.13^{\circ}C$, $12.2{\pm}0.14^{\circ}C$, and $12.6{\pm}0.13^{\circ}C$, respectively. The precipitation of 1970s, 1980s, 1990s, and 2000s were $1,270.3{\pm}20.05mm$, $1,343.0{\pm}26.01mm$, $1,350.6{\pm}27.13mm$, and $1,416.8{\pm}24.87mm$, respectively. And the sunshine duration of 1970s, 1980s, 1990s, and 2000s were $421.7{\pm}18.37hours$, $2,352.4{\pm}15.01hours$, $2,196.3{\pm}12.32hours$, and $2,146.8{\pm}15.37hours$, respectively. The temperature in Middle-Inland zone ($+1.2^{\circ}C$) and Eastern-Southern zone ($+1.1^{\circ}C$) remarkably increased. The temperature increased most in Taebak highly Cold zone ($+364mm$) and Taebak moderately Cold Zone ($+326mm$). The sunshine duration decreased most in Middle-Inland Zone (-995 hours). The temperature (F=2.708, df=3, p= 0.046) and precipitation (F=5.037, df=3, p=0.002) increased significantly among seasons while the sunshine duration decreased significantly(F=26.181, df=3, p<0.0001) among seasons. In further study, it will need to reclassify agro-climatic zone of rice and it will need to conduct studies on safe cropping season, growth and developing of rice, and cultivation management system etc. based on reclassified agro-climatic zone.

Demonstration of Disaster Information and Evacuation Support Model for the Safety Vulnerable Groups (안전취약계층을 위한 재난정보 및 대피지원 모델 실증)

  • Son, Min Ho;Kweon, Il Ryong;Jung, Tae Ho;Lee, Han Jun
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.465-486
    • /
    • 2021
  • Purpose: Since most disaster information systems are centered on non-disabled people, the reality is that there is a lack of disaster information delivery systems for the vulnerable, such as the disabled, the elderly, and children, who are relatively vulnerable to disasters. The purpose of the service is to improve the safety of the disabled and the elderly by eliminating blind spots of informatization and establishing customized disaster information services to respond to disasters through IoT-based integrated control technology. Method: The model at the core of this study is the disaster alert propagation model and evacuation support model, and it shall be developed by reflecting the behavioral characteristics of the disabled and the elderly in the event of a disaster. The disaster alert propagation model spreads disaster situations collected using IoT technology, and the evacuation support model uses geomagnetic field-based measuring technology to identify the user's indoor location and help the disabled and the elderly evacuate safely. Results: Demonstration model demonstration resulted in an efficient qualitative evaluation of indoor location accuracy, such as the suitability of evacuation route guidance and satisfaction of services from the user's perspective. Conclusion: Disaster information and evacuation support services were established for the safety vulnerable groups of mobile app for model verification. The disaster situation was demonstrated through experts in the related fields and the disabled by limiting it to the fire situation. It was evaluated as "satisfaction" in the adequacy of disaster information delivery and evacuation support, and its functional satisfaction and user UI were evaluated as "normal" due to the nature of the pilot model. Through this, the disaster information and evacuation support services presented in this study were evaluated to support the safety vulnerable groups to a faster disaster evacuation without missing the golden time of disaster evacuation.

Change Prediction of Forestland Area in South Korea using Multinomial Logistic Regression Model (다항 로지스틱 회귀모형을 이용한 우리나라 산지면적 변화 추정에 관한 연구)

  • KWAK, Doo-Ahn
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.42-51
    • /
    • 2020
  • This study was performed to support the 6th forest basic planning by Korea Forest Service as predicting the change of forestland area by the transition of land use type in the future over 35 years in South Korea. It is very important to analyze upcoming forestland area change for future forest planning because forestland plays a basic role to predict forest resources change for afforestation, production and management in the future. Therefore, the transitional interaction between land use types in future of South Korea was predicted in this study using econometrical models based on past trend data of land use type and related variables. The econometrical model based on maximum discounted profits theory for land use type determination was used to estimate total quantitative change by forestland, agricultural land and urban area at national scale using explanatory variables such as forestry value added, agricultural income and population during over 46 years. In result, it was analyzed that forestland area would decrease continuously at approximately 29,000 ha by 2027 while urban area increases in South Korea. However, it was predicted that the forestland area would be started to increase gradually at 170,000 ha by 2050 because urban area was reduced according to population decrement from 2032 in South Korea. We could find out that the increment of forestland would be attributed to social problems such as urban hollowing and localities extinction phenomenon by steep decrement of population from 2032. The decrement and increment of forestland by unbalanced population immigration to major cities and migration to localities might cause many social and economic problems against national sustainable development, so that future strategies and policies for forestland should be established considering such future change trends of land use type for balanced development and reasonable forestland use and conservation.

Multi-Level Analysis on the Influence of Core Employment Policies on the Team Leader's the Perceived Internal Process Organizational Competency and Job Satisfaction - Moderation Effect of Corporate Entrepreneurship - (인재우대 정책이 팀장의 인지된 조직 내부프로세스 역량과 직무만족도에 미치는 영향에 관한 다수준 분석 - 사내기업가 정신의 조절효과 중심으로 -)

  • Oh, Se-Ho;Nam, Jung-Min
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.8
    • /
    • pp.150-162
    • /
    • 2021
  • Companies have recently become increasingly interested in corporate entrepreneurship to establish a core employment policy in order to secure and maintain core employees and to foster an innovation-oriented organizational culture. Therefore, The purpose of this study is to empirically analyze the causal relationship between core employment policies and the team leader's the perceived internal process organizational competency and job satisfaction, and to investigate whether corporate entrepreneurship has a moderation effect. Non-financial service industries including ICT companies were subject of the study and human capital corporate panel(HCCP) was utilized. The samples were 367 team leaders from 79 domestic companies. This study also applied Multi-Level Analysis(HLM), which simultaneously analyzes variables at both the individual level and the organizational level in order to improve the accuracy of the study. According to the result of the study analysis, core employment policies have a positive(+) impact on the perceived internal process organizational competency and job satisfaction. In addition, the moderation effect of corporate entrepreneurship was verified during the process when core employment policies influence the two outcome variables. corporate entrepreneurship was found to have a moderation effect that strengthens the influence on job satisfaction, but the moderation effect on the perceived internal process organizational competency was not statistically significant. These results confirm that organizational cultural factors such as corporate entrepreneurship are important influence variables in the process of influencing individual-level variables such as core employment policies. Academically, It suggests that in order to enhance the effectiveness of company strategies in respect of human resource management such as core employment policies, it is important to foster a cultural environment that suits the industry and characteristics of the organization. In addition, it suggested that companies in need of new innovation need to utilize corporate entrepreneurship.

Exploring the Model of Social Enterprise in Sport: Focused on Organization Form(Type) and Task (스포츠 분야 사회적기업의 모델 탐색: 조직형태 및 과제)

  • Sang-Hyun Park;Joo-Young Park
    • Journal of Industrial Convergence
    • /
    • v.22 no.2
    • /
    • pp.73-83
    • /
    • 2024
  • The purpose of this study is to diagnose various problems arising around social enterprises in the sport field from the perspective of the organization and derive necessary tasks and implications. In order to achieve the purpose of the study, the study was largely divided into three stages, and the results were derived. First, the main status and characteristics of social enterprises in the sport field were examined. The current status was analyzed focusing on aspects such as background and origin, legislation and policy, organizational goals, organizational structure and procedures, and organizational characteristics. Social enterprises in the sport sector were in their early stages, and the government's social enterprise policy goal tended to focus on increasing the number of social enterprises in a short period of time through financial input. In addition, it was found that most individual companies rely on government subsidy support due to insufficient profit generation capacity. In the second stage, we focused on the situational factors that affect the functional performance of social enterprises in the sport field. As a result of reviewing the value, ideology, technology, and history of the organization, which are situational factors, it was derived that when certified as a social enterprise in the sport field and supported by the central government or local governments, political control is strong to some extent and exposure to the market is not severe. In the last third step, tasks and implications were derived to form an appropriate organization for social enterprises in the sport field. After the social enterprise ecosystem in the sport sector has been established to some extent, it is necessary to gradually move from the current "government-type" organization to the "national enterprise" organization. This is true in light of the government's limited financial level, not in the short term, but in order for the organization of social enterprises in the sports sector to survive in the long term.

Influence analysis of Internet buzz to corporate performance : Individual stock price prediction using sentiment analysis of online news (온라인 언급이 기업 성과에 미치는 영향 분석 : 뉴스 감성분석을 통한 기업별 주가 예측)

  • Jeong, Ji Seon;Kim, Dong Sung;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.37-51
    • /
    • 2015
  • Due to the development of internet technology and the rapid increase of internet data, various studies are actively conducted on how to use and analyze internet data for various purposes. In particular, in recent years, a number of studies have been performed on the applications of text mining techniques in order to overcome the limitations of the current application of structured data. Especially, there are various studies on sentimental analysis to score opinions based on the distribution of polarity such as positivity or negativity of vocabularies or sentences of the texts in documents. As a part of such studies, this study tries to predict ups and downs of stock prices of companies by performing sentimental analysis on news contexts of the particular companies in the Internet. A variety of news on companies is produced online by different economic agents, and it is diffused quickly and accessed easily in the Internet. So, based on inefficient market hypothesis, we can expect that news information of an individual company can be used to predict the fluctuations of stock prices of the company if we apply proper data analysis techniques. However, as the areas of corporate management activity are different, an analysis considering characteristics of each company is required in the analysis of text data based on machine-learning. In addition, since the news including positive or negative information on certain companies have various impacts on other companies or industry fields, an analysis for the prediction of the stock price of each company is necessary. Therefore, this study attempted to predict changes in the stock prices of the individual companies that applied a sentimental analysis of the online news data. Accordingly, this study chose top company in KOSPI 200 as the subjects of the analysis, and collected and analyzed online news data by each company produced for two years on a representative domestic search portal service, Naver. In addition, considering the differences in the meanings of vocabularies for each of the certain economic subjects, it aims to improve performance by building up a lexicon for each individual company and applying that to an analysis. As a result of the analysis, the accuracy of the prediction by each company are different, and the prediction accurate rate turned out to be 56% on average. Comparing the accuracy of the prediction of stock prices on industry sectors, 'energy/chemical', 'consumer goods for living' and 'consumer discretionary' showed a relatively higher accuracy of the prediction of stock prices than other industries, while it was found that the sectors such as 'information technology' and 'shipbuilding/transportation' industry had lower accuracy of prediction. The number of the representative companies in each industry collected was five each, so it is somewhat difficult to generalize, but it could be confirmed that there was a difference in the accuracy of the prediction of stock prices depending on industry sectors. In addition, at the individual company level, the companies such as 'Kangwon Land', 'KT & G' and 'SK Innovation' showed a relatively higher prediction accuracy as compared to other companies, while it showed that the companies such as 'Young Poong', 'LG', 'Samsung Life Insurance', and 'Doosan' had a low prediction accuracy of less than 50%. In this paper, we performed an analysis of the share price performance relative to the prediction of individual companies through the vocabulary of pre-built company to take advantage of the online news information. In this paper, we aim to improve performance of the stock prices prediction, applying online news information, through the stock price prediction of individual companies. Based on this, in the future, it will be possible to find ways to increase the stock price prediction accuracy by complementing the problem of unnecessary words that are added to the sentiment dictionary.

Intelligent Brand Positioning Visualization System Based on Web Search Traffic Information : Focusing on Tablet PC (웹검색 트래픽 정보를 활용한 지능형 브랜드 포지셔닝 시스템 : 태블릿 PC 사례를 중심으로)

  • Jun, Seung-Pyo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.93-111
    • /
    • 2013
  • As Internet and information technology (IT) continues to develop and evolve, the issue of big data has emerged at the foreground of scholarly and industrial attention. Big data is generally defined as data that exceed the range that can be collected, stored, managed and analyzed by existing conventional information systems and it also refers to the new technologies designed to effectively extract values from such data. With the widespread dissemination of IT systems, continual efforts have been made in various fields of industry such as R&D, manufacturing, and finance to collect and analyze immense quantities of data in order to extract meaningful information and to use this information to solve various problems. Since IT has converged with various industries in many aspects, digital data are now being generated at a remarkably accelerating rate while developments in state-of-the-art technology have led to continual enhancements in system performance. The types of big data that are currently receiving the most attention include information available within companies, such as information on consumer characteristics, information on purchase records, logistics information and log information indicating the usage of products and services by consumers, as well as information accumulated outside companies, such as information on the web search traffic of online users, social network information, and patent information. Among these various types of big data, web searches performed by online users constitute one of the most effective and important sources of information for marketing purposes because consumers search for information on the internet in order to make efficient and rational choices. Recently, Google has provided public access to its information on the web search traffic of online users through a service named Google Trends. Research that uses this web search traffic information to analyze the information search behavior of online users is now receiving much attention in academia and in fields of industry. Studies using web search traffic information can be broadly classified into two fields. The first field consists of empirical demonstrations that show how web search information can be used to forecast social phenomena, the purchasing power of consumers, the outcomes of political elections, etc. The other field focuses on using web search traffic information to observe consumer behavior, identifying the attributes of a product that consumers regard as important or tracking changes on consumers' expectations, for example, but relatively less research has been completed in this field. In particular, to the extent of our knowledge, hardly any studies related to brands have yet attempted to use web search traffic information to analyze the factors that influence consumers' purchasing activities. This study aims to demonstrate that consumers' web search traffic information can be used to derive the relations among brands and the relations between an individual brand and product attributes. When consumers input their search words on the web, they may use a single keyword for the search, but they also often input multiple keywords to seek related information (this is referred to as simultaneous searching). A consumer performs a simultaneous search either to simultaneously compare two product brands to obtain information on their similarities and differences, or to acquire more in-depth information about a specific attribute in a specific brand. Web search traffic information shows that the quantity of simultaneous searches using certain keywords increases when the relation is closer in the consumer's mind and it will be possible to derive the relations between each of the keywords by collecting this relational data and subjecting it to network analysis. Accordingly, this study proposes a method of analyzing how brands are positioned by consumers and what relationships exist between product attributes and an individual brand, using simultaneous search traffic information. It also presents case studies demonstrating the actual application of this method, with a focus on tablets, belonging to innovative product groups.

A Store Recommendation Procedure in Ubiquitous Market for User Privacy (U-마켓에서의 사용자 정보보호를 위한 매장 추천방법)

  • Kim, Jae-Kyeong;Chae, Kyung-Hee;Gu, Ja-Chul
    • Asia pacific journal of information systems
    • /
    • v.18 no.3
    • /
    • pp.123-145
    • /
    • 2008
  • Recently, as the information communication technology develops, the discussion regarding the ubiquitous environment is occurring in diverse perspectives. Ubiquitous environment is an environment that could transfer data through networks regardless of the physical space, virtual space, time or location. In order to realize the ubiquitous environment, the Pervasive Sensing technology that enables the recognition of users' data without the border between physical and virtual space is required. In addition, the latest and diversified technologies such as Context-Awareness technology are necessary to construct the context around the user by sharing the data accessed through the Pervasive Sensing technology and linkage technology that is to prevent information loss through the wired, wireless networking and database. Especially, Pervasive Sensing technology is taken as an essential technology that enables user oriented services by recognizing the needs of the users even before the users inquire. There are lots of characteristics of ubiquitous environment through the technologies mentioned above such as ubiquity, abundance of data, mutuality, high information density, individualization and customization. Among them, information density directs the accessible amount and quality of the information and it is stored in bulk with ensured quality through Pervasive Sensing technology. Using this, in the companies, the personalized contents(or information) providing became possible for a target customer. Most of all, there are an increasing number of researches with respect to recommender systems that provide what customers need even when the customers do not explicitly ask something for their needs. Recommender systems are well renowned for its affirmative effect that enlarges the selling opportunities and reduces the searching cost of customers since it finds and provides information according to the customers' traits and preference in advance, in a commerce environment. Recommender systems have proved its usability through several methodologies and experiments conducted upon many different fields from the mid-1990s. Most of the researches related with the recommender systems until now take the products or information of internet or mobile context as its object, but there is not enough research concerned with recommending adequate store to customers in a ubiquitous environment. It is possible to track customers' behaviors in a ubiquitous environment, the same way it is implemented in an online market space even when customers are purchasing in an offline marketplace. Unlike existing internet space, in ubiquitous environment, the interest toward the stores is increasing that provides information according to the traffic line of the customers. In other words, the same product can be purchased in several different stores and the preferred store can be different from the customers by personal preference such as traffic line between stores, location, atmosphere, quality, and price. Krulwich(1997) has developed Lifestyle Finder which recommends a product and a store by using the demographical information and purchasing information generated in the internet commerce. Also, Fano(1998) has created a Shopper's Eye which is an information proving system. The information regarding the closest store from the customers' present location is shown when the customer has sent a to-buy list, Sadeh(2003) developed MyCampus that recommends appropriate information and a store in accordance with the schedule saved in a customers' mobile. Moreover, Keegan and O'Hare(2004) came up with EasiShop that provides the suitable tore information including price, after service, and accessibility after analyzing the to-buy list and the current location of customers. However, Krulwich(1997) does not indicate the characteristics of physical space based on the online commerce context and Keegan and O'Hare(2004) only provides information about store related to a product, while Fano(1998) does not fully consider the relationship between the preference toward the stores and the store itself. The most recent research by Sedah(2003), experimented on campus by suggesting recommender systems that reflect situation and preference information besides the characteristics of the physical space. Yet, there is a potential problem since the researches are based on location and preference information of customers which is connected to the invasion of privacy. The primary beginning point of controversy is an invasion of privacy and individual information in a ubiquitous environment according to researches conducted by Al-Muhtadi(2002), Beresford and Stajano(2003), and Ren(2006). Additionally, individuals want to be left anonymous to protect their own personal information, mentioned in Srivastava(2000). Therefore, in this paper, we suggest a methodology to recommend stores in U-market on the basis of ubiquitous environment not using personal information in order to protect individual information and privacy. The main idea behind our suggested methodology is based on Feature Matrices model (FM model, Shahabi and Banaei-Kashani, 2003) that uses clusters of customers' similar transaction data, which is similar to the Collaborative Filtering. However unlike Collaborative Filtering, this methodology overcomes the problems of personal information and privacy since it is not aware of the customer, exactly who they are, The methodology is compared with single trait model(vector model) such as visitor logs, while looking at the actual improvements of the recommendation when the context information is used. It is not easy to find real U-market data, so we experimented with factual data from a real department store with context information. The recommendation procedure of U-market proposed in this paper is divided into four major phases. First phase is collecting and preprocessing data for analysis of shopping patterns of customers. The traits of shopping patterns are expressed as feature matrices of N dimension. On second phase, the similar shopping patterns are grouped into clusters and the representative pattern of each cluster is derived. The distance between shopping patterns is calculated by Projected Pure Euclidean Distance (Shahabi and Banaei-Kashani, 2003). Third phase finds a representative pattern that is similar to a target customer, and at the same time, the shopping information of the customer is traced and saved dynamically. Fourth, the next store is recommended based on the physical distance between stores of representative patterns and the present location of target customer. In this research, we have evaluated the accuracy of recommendation method based on a factual data derived from a department store. There are technological difficulties of tracking on a real-time basis so we extracted purchasing related information and we added on context information on each transaction. As a result, recommendation based on FM model that applies purchasing and context information is more stable and accurate compared to that of vector model. Additionally, we could find more precise recommendation result as more shopping information is accumulated. Realistically, because of the limitation of ubiquitous environment realization, we were not able to reflect on all different kinds of context but more explicit analysis is expected to be attainable in the future after practical system is embodied.

Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment (클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현)

  • Kim, Myoungjin;Han, Seungho;Cui, Yun;Lee, Hanku
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.71-84
    • /
    • 2013
  • Log data, which record the multitude of information created when operating computer systems, are utilized in many processes, from carrying out computer system inspection and process optimization to providing customized user optimization. In this paper, we propose a MongoDB-based unstructured log processing system in a cloud environment for processing the massive amount of log data of banks. Most of the log data generated during banking operations come from handling a client's business. Therefore, in order to gather, store, categorize, and analyze the log data generated while processing the client's business, a separate log data processing system needs to be established. However, the realization of flexible storage expansion functions for processing a massive amount of unstructured log data and executing a considerable number of functions to categorize and analyze the stored unstructured log data is difficult in existing computer environments. Thus, in this study, we use cloud computing technology to realize a cloud-based log data processing system for processing unstructured log data that are difficult to process using the existing computing infrastructure's analysis tools and management system. The proposed system uses the IaaS (Infrastructure as a Service) cloud environment to provide a flexible expansion of computing resources and includes the ability to flexibly expand resources such as storage space and memory under conditions such as extended storage or rapid increase in log data. Moreover, to overcome the processing limits of the existing analysis tool when a real-time analysis of the aggregated unstructured log data is required, the proposed system includes a Hadoop-based analysis module for quick and reliable parallel-distributed processing of the massive amount of log data. Furthermore, because the HDFS (Hadoop Distributed File System) stores data by generating copies of the block units of the aggregated log data, the proposed system offers automatic restore functions for the system to continually operate after it recovers from a malfunction. Finally, by establishing a distributed database using the NoSQL-based Mongo DB, the proposed system provides methods of effectively processing unstructured log data. Relational databases such as the MySQL databases have complex schemas that are inappropriate for processing unstructured log data. Further, strict schemas like those of relational databases cannot expand nodes in the case wherein the stored data are distributed to various nodes when the amount of data rapidly increases. NoSQL does not provide the complex computations that relational databases may provide but can easily expand the database through node dispersion when the amount of data increases rapidly; it is a non-relational database with an appropriate structure for processing unstructured data. The data models of the NoSQL are usually classified as Key-Value, column-oriented, and document-oriented types. Of these, the representative document-oriented data model, MongoDB, which has a free schema structure, is used in the proposed system. MongoDB is introduced to the proposed system because it makes it easy to process unstructured log data through a flexible schema structure, facilitates flexible node expansion when the amount of data is rapidly increasing, and provides an Auto-Sharding function that automatically expands storage. The proposed system is composed of a log collector module, a log graph generator module, a MongoDB module, a Hadoop-based analysis module, and a MySQL module. When the log data generated over the entire client business process of each bank are sent to the cloud server, the log collector module collects and classifies data according to the type of log data and distributes it to the MongoDB module and the MySQL module. The log graph generator module generates the results of the log analysis of the MongoDB module, Hadoop-based analysis module, and the MySQL module per analysis time and type of the aggregated log data, and provides them to the user through a web interface. Log data that require a real-time log data analysis are stored in the MySQL module and provided real-time by the log graph generator module. The aggregated log data per unit time are stored in the MongoDB module and plotted in a graph according to the user's various analysis conditions. The aggregated log data in the MongoDB module are parallel-distributed and processed by the Hadoop-based analysis module. A comparative evaluation is carried out against a log data processing system that uses only MySQL for inserting log data and estimating query performance; this evaluation proves the proposed system's superiority. Moreover, an optimal chunk size is confirmed through the log data insert performance evaluation of MongoDB for various chunk sizes.

Study on the Relationships Among Perceived Shopping Values, Brand Equity, and Store Loyalty of Korean and Chinese Consumers: A Case of Large Discount Store (한국과 중국 소비자의 쇼핑 경험가치 지각과 브랜드자산 및 점포충성도의 관계에 관한 비교 연구: 대형 할인점을 중심으로)

  • Hwang, Soonho;Oh, Jongchul;Yoon, Sungjoon
    • Asia Marketing Journal
    • /
    • v.14 no.2
    • /
    • pp.209-237
    • /
    • 2012
  • 1. Research Purpose Consumers rely on various clues to evaluate their decision to patronize a retail store, and store brand is one of them (Dodds 1991; Grewal et al. 1998). As consumers find ever increasing variety of contact points connecting them to specific store, the value of experiential shopping as a means of increasing store's brand equity warrants greater attention from scholars of retail management. Retail shopping values are credited for creating not only cognitive experiences like brand knowledge but also emotional experiences such as shopping pleasure and pride (Schmitt 1999). This may be because today's consumers place emphasis on emotional values associated with shopping pleasure, lifestyle brought to life, brand relationship, and store atmosphere more than utilitarian values such as product quality and price. Many previous literature found this to be true (Ahn and Lee 2011; Mathwick et al. 2001). This brings forth important research issues and questions regarding the roles of shopping experiential values and brand equity with regard to consumer's retail patronage choice. However, despite this importance, research on this area remains quite inadequate (Hwang 2010). For this reason, this study aims to verify the relationships among experiential shopping values, retail store brand equity and tries to link that with customer loyalty by surveying large-scale discount store shoppers in Korea and China. 2. Research Contents In order to carry out the research objective, this study conducted comprehensive literature survey on previous literature by discussing major findings and implications with regard to shopping values and retail brand equity and store loyalty. For data collection, researcher employed survey-based research method where data were collected in two major cities of Korea (Seoul) and China (Bejing) and sampling frame was based on patrons of large discount stores in both countries. Specific research questions raised in this study are as follows; RQ1: How do Korean and Chinese consumers differently perceive of shopping values regarding shopping at large-sclae discount stores? RQ2: Are there differences in consumers' emotional consumption propensities? RQ3: Do Korean and Chinese consumers display different perceptions of brand equity towards large-scale discount stores? RQ4: Are there differences in relationships between shopping values and brand equity for Korean and Chinese consumers? For statistical analysis, SPSS17.0, AMOS17.0 and SmartPLS were employed. 3. Research Results The data collected through face-to-face survey conducted in Seoul and Bejing revealed appropriate data validity and reliability as a result of exploratory/confirmatory factor analysis and reliability tests, andh SEM model yielding satisfactory model fitness. The result of the study may be summarized by three main points. First, as a result of testing differences in consumption dispositions, Chinese consumers showed higher scores in aesthetic and symbolic dispositions, whereas Korean consumers scored higher in hedonic disposition. Second, testing on perceptions toward brand equity of large discount stores showed that Korean consumers exhibited more positive perceptions of brand awareness and brand image than Chinese counterparts. Third, the result of exploratory factor analysis on the experiential shopping values revealed different factors for each country. On Korean side, consumer interest value, aesthetic value, and hedonic value were prominent, whereas on Chinese side, hedonic value, aesthetic value, consumer interest value, and service excellence value were found salient. 4. Research Implications While many previous studies on inter-country differences in retailing area mainly focused on cultural dispositions or orientations to explain the differences, this study sets itself apart by specifically targeting individual consumer's shopping values from an experiential viewpoint. The study result provides important theoretical as well as practical implications for large-scale discount store, especially the impotance of fully exploring the linkage between shopping values and brand equity, which has significant influence on loyalty. Therefore, the specific implications deriving from the result shed some important insights upon the consumption values based on shopping experiences and brand equity. The differences found in store shoppers between the two countries may also provide useful insights for Korean and Chinese retailers who plan to expand their operations globally. Related strategic implications derived from this study is the importance of localizing retail strategy which is based on the differences found in experiential shopping values between the two country groups. Especially the finding that Chinese consumers value consumer interest and service excellence, whereas Koreans place importance on hedonic or aesthetic values indicates the need to differentiate the consumer's psychographical profiles when it comes to expanding retail operations globally. Particularly important will be to pursue price-orienated strategy in China in consideration of the high emphasis on consumer interests and service excellence, but to emphasize the symbolic aspects of brand equity in Korea by maximizing the brand equity associated with aesthetic values and hedonic orientations. 5. Recommendations This study focused on generic retail branded discount stores in both countries, thus making it difficult to tease out store-specific strategies based on specific retail brands. Future studies may benefit fro employing actual brand names in survey questionnaire to verify relationship between shopping values and brand-based store strategy. As with other studies of this nature, this study needs to strengthen the result's generalizability by selecting respondents from a wider spectrum of respondents.

  • PDF