• Title/Summary/Keyword: IT ROI Evaluation

Search Result 77, Processing Time 0.019 seconds

A study on Evaluating Validity of SNR Calculation Using a Conventional Two Region Method in MR Images Applied a Multichannel Coil and Parallel Imaging Technique (다중채널코일과 병렬영상기법 이용 시 두영역측정법을 사용한 신호대잡음비 측정의 문제점)

  • Choi, Kwan-Woo;Son, Soon-Yong;Min, Jung-Whan;Kwon, Kyung-Tae;Yoo, Beong-Gyu;Lee, Jong-Seok
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.403-410
    • /
    • 2015
  • The purpose of this study was to investigate the problems of a signal to noise ratio measurement using a two region measurement method that is conventionally used when using a multi-channel coil and a parallel imaging technique. As a research method, after calculating the standard SNR using a single channel head coil of which coil satisfies three preconditions when using a two region measurement method, we made comparisons and evaluations after calculating an SNR by using a two region measurement method of which method is problematic because it is used without considering the methods recommended by reputable organizations and the preconditions at the time of using a multi-channel coil and a parallel imaging technique. We found that a two region measurement method using a multi-channel coil and a parallel imaging technique shows the highest relative standard deviation, and thus shows a low degree of precision. In addition, we found out that the difference of SNR according to ROI location was very high, and thus a spatial noise distribution was not uniform. Also, 95% confidence interval through Blend-Altman plot is the widest, and thus the conformity degree with a two region measurement method using the standard single channel head coil is low. By directly comparing an AAPM method, which serves as a standard of a performance evaluation test of a magnetic resonance imaging device under the same image acquisition conditions, an NEMA method which can accurately determine the noise level in a signal region and the methods recommended by manufacturers of a magnetic resonance imaging device, there is a significance in that we quantitatively verified the inaccurate problems of a signal to noise ratio using a two region measurement method when using a multi-channel coil and a parallel imaging technique of which method does not satisfy the preconditions that researchers could overlook.

Assessment of Acquisition Protocols for Post-Radioembolization Yttrium-90 PET/CT: Initial Study (90Y SIR-Spheres를 사용한 암의 간 전이치료에서 PET 영상획득에 관한 초기연구)

  • Bahn, Young Kag;Oh, Shin Hyun;Kim, Jung Yul;Lee, Seung Jae;Park, Joon Young;Shin, Heui Soon;Lim, Han Sang;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.89-93
    • /
    • 2014
  • Purpose: We investigated the quantitative evaluation of PET/CT images for evaluation after treatment in the treatment of liver metastasis of cancer with $^{90}YSIR$-Sphere. Materials and Methods: Confirmed the correlation between the measured counts was expressed by setting a region of interest from the image and a measure of the dose calibrator to see a correlation diagram of an image in a PET of $^{90}Y$. A portion uptake coefficients between PET images were acquired for 20 minutes LIST mode in 15 patients treated for liver metastasis of cancer using $^{90}Y$ SIR-Spheres high, intermediate portion, a lower portion, three measuring the coefficient of the region of interest is divided into parts, we studied the conditions for proper image acquisition. Results: Coefficient of sites that set the region of interest of the PET image and the measured counts of $^{90}Yappears$ that there is a correlation diagram statistically, ($R^2=0.956$), correlation diagram from the PET image of $^{90}Yis$, PET coefficient the coefficients of all regions of interest were increased in proportion to the image acquisition time, partial ROI coefficients of the PET image is higher about 10 minutes on average, about 14 minutes on average, the central portion is lower part 19 minute average in, confirmed the equilibrium of the standard deviation. Conclusion: Using the isotope $^{90}Y$, it is suitable to obtain a PET image, to obtain the time of proper image, the evaluation of PET/CT images, using the $^{90}Y$ SIR-Spheres and that in the treatment of liver metastases of cancer, it is useful for assessing treatment.

  • PDF

Fireworks Modeling Technique based on Particle Tracking (입자추적기반의 불꽃 모델링 기법)

  • Cho, ChangWoo;Kim, KiHyun;Jeong, ChangSung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.102-109
    • /
    • 2014
  • A particle system is used for modeling the physical phenomenon. There are many traditional ways for simulation modeling which can be well suited for application including the landscapes of branches, clouds, waves, fog, rain, snow and fireworks in the three-dimensional space. In this paper, we present a new fireworks modeling technique for modeling 3D firework based on Firework Particle Tracking (FPT) using the particle system. Our method can track and recognize the launched and exploded particle of fireworks, and extracts relatively accurate 3D positions of the particles using 3D depth values. It can realize 3D simulation by using tracking information such as position, speed, color and life time of the firework particle. We exploit Region of Interest (ROI) for fast particle extraction and the prevention of false particle extraction caused by noise. Moreover, Kalman filter is used to enhance the robustness in launch step. We propose a new fireworks particle tracking method for the efficient tracking of particles by considering maximum moving range and moving direction of particles, and shall show that the 3D speeds of particles can be obtained by finding the rotation angles of fireworks. Also, we carry out the performance evaluation of particle tracking: tracking speed and accuracy for tracking, classification, rotation angle respectively with respect to four types of fireworks: sphere, circle, chrysanthemum and heart.

Fractional Anisotropy of Diffusion Tensor Imaging as a Predict Factor in Patient with Acute Cerebral Infarction (급성 뇌경색 환자에서 예후 추측인자로서의 확산텐서영상 비등방도)

  • Kim, Sung-Gil;Eun, Sung-Jong
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.3
    • /
    • pp.13-18
    • /
    • 2010
  • Purpose : Diffusion tensor imaging(DTI) allows the visualization of fiber tract damage in patients with cerebral infarction. The purpose of this study is to evaluate the correlation between degree of NIH stoke scale and fractional anisotropy (FA) in patient with cerebral infarction. Material and Methods : 16 patients aged 36~77 years(male : 11, female : 5, mean age : 61y), diagnosed cerebral infarction by diffusion weighted imaging(DWI), underwent 24 directional diffusion tensor imaging(DTI). Patients had the DTI taken within 3days of stroke onset. Comparison of DWI, FA value on DTI were measured infarcted area and counter part of specific region of interest (ROI). And evaluation of differences between clinically improved patient group (n=9) and unimproved patient group (n=7) until 2 week follow up after development of cerebral infarction. Clinical status was scaled by NIH stroke scale. Results : Quantitative measurements of FA confirmed statistically the significant diffusion changes in the infarct compared with the matched-counter part region. In DWI, the infarcted area shows high signal intensity, however FA value on DTI was lower than normal brain parenchyma. The FA value of clinically improved patient by NIH stroke scale was 0.49, and the value of contralateral normal brain parenchyma was 0.41. On the contrary, FA value of infarcted area shows about 15% lower than normal brain parenchyma. But, the FA value of unimproved patient by NIH stroke scale represents a half those of contralateral normal brain parenchyma (0.28 on infarcted area vs. 0.56 on normal brain parenchyma). So, the FA value of unimproved patient group was considerably less than those of improved. Conclusion : It is concluded that the unimproved patient group after cerebral infarction showed much less FA value than that of normal brain parenchyma. The FA value of DTI may be one of the useful parameter to predict outcome of cerebral infarction patients.

Evaluation of Spatial Uniformity about Resolution and Sensitivity of a 'fixed focusing type SPECT' (고정식 초점형 SPECT에 있어, 선예도와 감도의 공간 균일성에 대한 평가)

  • Kim, Jaeil;Lim, Jeongjin;Cho, Seongwook;Noh, Kyeongwoon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.54-58
    • /
    • 2019
  • Purpose At now, there are many kind of dedicated heart SPECT machine in clinical nuclear medicine. Among those, the fixed focusing type SPECT can make a good quality, quantity image because a detectors of this SPECT arranged forward a special ROI and didn't rotate around of body. So, in this paper, we will evaluate a spatial uniformity about resolution and sensitivity at a same plane of a fixed focusing type SPECT. Materials and Methods We used D-SPECT as a fixed focusing type SPECT and Cario MD as a rotated parallel type SPECT to comparing each other. We injected $^{99m}Tc(14.8MBq/1cc)$ to 10 capillary tube (diameter=1mm), and we set those line sources a tfield of view of each SPECT. And then we acquired SPECT date, we applied are construction by recommended methods. By using two tomography images, we calculated a full width of half maximum as a resolution and total counts as a sensitivity, and we compared a CV (coefficientofvariation) values between two images as a spatial uniformity. Results In case of D-SPECT, a CV of resolution and sensitivity are 7.45%, 12.34%. In case of Cario MD, an CV of resolution and sensitivity are 12.49%, 21.84% Conclusion As a results, CV of resolution and sensitivity of a fixed focusing type SPECT is 67.75%, 77.00% higher than ones of a rotated parallel type SPECT. It means that a fixed focusing type SPECT is more uniformed, because this new SPECT can reduce a motion blur artifact by rotating detector around body, also all of detector that made by semiconductor arrange forward a special FOV like heart.

A Study on How Height and Weight Affects Glomerular Filtration Rate (신장과 체중의 변화가 사구체 여과율에 미치는 영향)

  • Park, A Rang;Choi, Jong Sook;Lee, Young Hee;Jung, Woo Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.40-44
    • /
    • 2019
  • Purpose Glomerular filtration rate (GFR) is an important index for evaluation of renal function, renal disease diagnosis and progress monitoring. Therefore, accurate measurement of GFR is clinically important. Among the factors that affect the GFR result, there have been many discussions on the methods such as the correction of the kidney depth, net syringe count, and the method of setting the ROI. However there has been no consideration of counting in the most basic factors like height and weight measurement. In this study, we investigate how height and weight changes affects the result of GFR and review the importance of standardized body measurements. Materials and Methods Fifty patients who underwent GFR test were randomly sampled and examined for changes in height and body weight within one month. From the normal patients without renal disease to the patients with severely decreased GFR, we applied the GFR formula of Gate with varying height and weight. Results: The result showed variation of the height at maximum three centimeters and six kilograms of weight. The first calculation of GFR was done with fixed height value and control variable as weight. Weight was incremented by one kilogram each time up to six kilograms. The GFR showed increased result with increasing weight. The result of GFR showed ten percent increase with six kilograms of weight increase. On the other hand, when height value was incremented by one centimeter up to three centimeters showed decreased GFR result with fixed weight value. Up to three centimeters of height increase showed two percent of decreased GFR with fixed weight. Conclusion This study showed varying GFR result when height and weight changes. Therefore it is clinically crucial not only to maintain and manage body measuring instrument but also to have a standardized measurement methods to derive accurate measured values and to achieve reproducibility.

Changes in CT Number and Noise Level according to Pitch in Spiral Image Acquisition (나선형영상획득에서 Pitch에 따른 CT 감약계수와 잡음의 변화)

  • Kang, SungJin
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.981-989
    • /
    • 2020
  • In this study, a self-made customized phantom was used to quantitatively measure the change in CT number and noise according to the change of pitch. In order to acquire an image using the phantom, the inside of the phantom was filled with sterile distilled water. Inside the glass tube, a solution obtained by diluting the ratio of normal saline and contrast medium to 100%(NS), 400:1, 200:1, 100:1, 50:1, respectively, was placed and imaged. At this time, the pitch was divided into steps of 0, 0.35, 0.7, 1.05, and 1.4 for each dilution ratio of the solution and imaged, respectively. One-way ANOVA analysis were performed to verify whether the mean of the CT number and noise values measured in all ROIs by dilution ratio showed a significant difference according to the change in pitch. As a result of the experiment, there was no statistically significant difference in the change of the CT number according to the change in the pitch for each dilution ratio, but the noise value tended to increase with the increase of the pitch, and showed a statistically significant difference. In the spiral image acquisition of CT, noise can be changed to a significant level depending on the pitch. Therefore, it will be necessary to set the quality evaluation items and criteria for CT images using the spiral image acquisition method.

Development of Dynamic Kidney Phantom System and its Evaluation of Usability of Application in Nuclear Medicine (핵의학 동적 신장팬텀시스템 개발 적용의 유용성 평가)

  • Park, Hoon-Hee;Lee, Juyoung;Kim, Sang-Wook;Lyu, Kwang Yeul;Jin, Gye Hwan
    • Journal of radiological science and technology
    • /
    • v.36 no.1
    • /
    • pp.49-55
    • /
    • 2013
  • Currently, commercially available phantom can reproduce and evaluate only a static situation, the study is incomplete research on phantom and system which is can confirmed functional situation in the kidney by time through dynamic phantom and blood flow velocity, various difference according to the amount of radioactive. Therefore, through this study, it has produced the dynamic kidney phantom to reproduce images through the dynamic flow of the kidney, it desires to evaluate the usefulness of nuclear medicine imaging. The production of the kidney phantom was fabricated based on the normal adult kidney, in order to reproduce the dynamic situation based on the fabricated kidney phantom, in this study, it was applied the volume pump that can adjust the speed of blood flow, so it can be integrated continuously radioactive isotopes in the kidney by using $^{99m}Tc$-pertechnate. Used the radioactive isotope was supplied through the two pump. It was confirmed the changes according to the infusion rate, radioactive isotopes and the different injection speeds on the left and right, analysis of the acquired images was done by drawn five times ROI in order to check the reproducibility of each on the front and rear of the kidney and bladder. Depending on the speed of injection, radioisotope was a lot of integrated and emissions up when adjusting the pressure of the pump as 30 stroke, it was the least integrated and emissions up when adjusting as 40 stroke. The integration of the left & right kidney was not reached in the amount of the highest when adjusting as 10 stroke. In the changes according to the amount of the radioactive isotope, 0.6 mCi(22.2 MBq), 0.8 mCi (29.6 MBq)was showed up similar tendency but, in the result of the different injection 0.8 mCi, it was showed up counts close to double of 0.6 mCi. In the result of the differently injection speed of the left & right kidney, as a result of different conditions that injection speed was 20 stroke through left kidney phantom, the injection speed was 30 stroke through right kidney phantom, it was enough difference in the resulting image can be easily distinguished with the naked eye. Through this study, the results showed that the dynamic kidney phantom system is able to similarly reproduce renogram in the actual clinical practice. Especially, the depicted over time for the flow to be excreted through the kidney into the bladder was adequately reproduce, it is expected to be utilized as basic data to check the quality of the dynamic images. In addition, it is considered to help in the field of functional imaging and quality control.

Evaluation of the Usefulness of Exactrac in Image-guided Radiation Therapy for Head and Neck Cancer (두경부암의 영상유도방사선치료에서 ExacTrac의 유용성 평가)

  • Baek, Min Gyu;Kim, Min Woo;Ha, Se Min;Chae, Jong Pyo;Jo, Guang Sub;Lee, Sang Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.7-15
    • /
    • 2020
  • Purpose: In modern radiotherapy technology, several methods of image guided radiation therapy (IGRT) are used to deliver accurate doses to tumor target locations and normal organs, including CBCT (Cone Beam Computed Tomography) and other devices, ExacTrac System, other than CBCT equipped with linear accelerators. In previous studies comparing the two systems, positional errors were analysed rearwards using Offline-view or evaluated only with a Yaw rotation with the X, Y, and Z axes. In this study, when using CBCT and ExacTrac to perform 6 Degree of the Freedom(DoF) Online IGRT in a treatment center with two equipment, the difference between the set-up calibration values seen in each system, the time taken for patient set-up, and the radiation usefulness of the imaging device is evaluated. Materials and Methods: In order to evaluate the difference between mobile calibrations and exposure radiation dose, the glass dosimetry and Rando Phantom were used for 11 cancer patients with head circumference from March to October 2017 in order to assess the difference between mobile calibrations and the time taken from Set-up to shortly before IGRT. CBCT and ExacTrac System were used for IGRT of all patients. An average of 10 CBCT and ExacTrac images were obtained per patient during the total treatment period, and the difference in 6D Online Automation values between the two systems was calculated within the ROI setting. In this case, the area of interest designation in the image obtained from CBCT was fixed to the same anatomical structure as the image obtained through ExacTrac. The difference in positional values for the six axes (SI, AP, LR; Rotation group: Pitch, Roll, Rtn) between the two systems, the total time taken from patient set-up to just before IGRT, and exposure dose were measured and compared respectively with the RandoPhantom. Results: the set-up error in the phantom and patient was less than 1mm in the translation group and less than 1.5° in the rotation group, and the RMS values of all axes except the Rtn value were less than 1mm and 1°. The time taken to correct the set-up error in each system was an average of 256±47.6sec for IGRT using CBCT and 84±3.5sec for ExacTrac, respectively. Radiation exposure dose by IGRT per treatment was measured at 37 times higher than ExacTrac in CBCT and ExacTrac at 2.468mGy and 0.066mGy at Oral Mucosa among the 7 measurement locations in the head and neck area. Conclusion: Through 6D online automatic positioning between the CBCT and ExacTrac systems, the set-up error was found to be less than 1mm, 1.02°, including the patient's movement (random error), as well as the systematic error of the two systems. This error range is considered to be reasonable when considering that the PTV Margin is 3mm during the head and neck IMRT treatment in the present study. However, considering the changes in target and risk organs due to changes in patient weight during the treatment period, it is considered to be appropriately used in combination with CBCT.

Effect of Inhomogeneity correction for lung volume model in TPS (Lnug Volume을 모델로 한 방사선치료계획 시 불균질 조직 보정에 따른 효과)

  • Chung SeYoung;Lee SangRok;Kim YoungBum;Kwon YoungHo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2004
  • Introduction : The phantom that includes high density materials such as steel was custom-made to fix lung and bone in order to evaluation inhomogeneity correction at the time of conducting radiation therapy to treat lung cancer. Using this, values resulting from the inhomogeneous correction algorithm are compared on the 2 and 3 dimensional radiation therapy planning systems. Moreover, change in dose calculation was evaluated according to inhomogeneous by comparing with the actual measurement. Materials and Methods : As for the image acquisition, inhomogeneous correction phantom(Pig's vertebra, steel(8.21g/cm3), cork(0.23 g/cm3)) that was custom-made and the CT(Volume zoom, Siemens, Germany) were used. As for the radiation therapy planning system, Marks Plan(2D) and XiO(CMS, USA, 3D) were used. To compare with the measurement value, linear accelerator(CL/1800, Varian, USA) and ion chamber were used. Image, obtained from the CT was used to obtain point dose and dose distribution from the region of interest (ROI) while on the radiation therapy planning device. After measurement was conducted under the same conditions, value on the treatment planning device and measured value were subjected to comparison and analysis. And difference between the resulting for the evaluation on the use (or non-use) of inhomogeneity correction algorithm, and diverse inhomogeneity correction algorithm that is included in the radiation therapy planning device was compared as well. Results : As result of comparing the results of measurement value on the region of interest within the inhomogeneity correction phantom and the value that resulted from the homogeneous and inhomogeneous correction, gained from the therapy planning device, margin of error of the measurement value and inhomogeneous correction value at the location 1 of the lung showed $0.8\%$ on 2D and $0.5\%$ on 3D. Margin of error of the measurement value and inhomogeneous correction value at the location 1 of the steel showed $12\%$ on 2D and $5\%$ on 3D, however, it is possible to see that the value that is not correction and the margin of error of the measurement value stand at $16\%$ and $14\%$, respectively. Moreover, values of the 3D showed lower margin of error compared to 2D. Conclusion : Revision according to the density of tissue must be executed during radiation therapy planning. To ensure a more accurate planning, use of 3D planning system is recommended more so than the 2D Planning system to ensure a more accurate revision on the therapy plan. Moreover, 3D Planning system needs to select and use the most accurate and appropriate inhomogeneous correction algorithm through actual measurement. In addition, comparison and analysis through TLD or film dosimetry are needed.

  • PDF