DOI QR코드

DOI QR Code

A study on Evaluating Validity of SNR Calculation Using a Conventional Two Region Method in MR Images Applied a Multichannel Coil and Parallel Imaging Technique

다중채널코일과 병렬영상기법 이용 시 두영역측정법을 사용한 신호대잡음비 측정의 문제점

  • Choi, Kwan-Woo (Department of Radiology, Asan Medical Center) ;
  • Son, Soon-Yong (Department of Radiology, Asan Medical Center) ;
  • Min, Jung-Whan (Department of Radiological Technology, Shin-Gu University) ;
  • Kwon, Kyung-Tae (Department of Radiological Technology, Dongnam Health University) ;
  • Yoo, Beong-Gyu (Department of Radiotechnology, Wonkwang Health Science University) ;
  • Lee, Jong-Seok (Department of Radiotechnology, Wonkwang Health Science University)
  • 최관우 (서울아산병원 영상의학과) ;
  • 손순룡 (서울아산병원 영상의학과) ;
  • 민정환 (신구대학교 방사선과) ;
  • 권경태 (동남보건대학교 방사선과) ;
  • 유병규 (원광보건대학교 방사선과) ;
  • 이종석 (원광보건대학교 방사선과)
  • Received : 2015.08.22
  • Accepted : 2015.12.09
  • Published : 2015.12.31

Abstract

The purpose of this study was to investigate the problems of a signal to noise ratio measurement using a two region measurement method that is conventionally used when using a multi-channel coil and a parallel imaging technique. As a research method, after calculating the standard SNR using a single channel head coil of which coil satisfies three preconditions when using a two region measurement method, we made comparisons and evaluations after calculating an SNR by using a two region measurement method of which method is problematic because it is used without considering the methods recommended by reputable organizations and the preconditions at the time of using a multi-channel coil and a parallel imaging technique. We found that a two region measurement method using a multi-channel coil and a parallel imaging technique shows the highest relative standard deviation, and thus shows a low degree of precision. In addition, we found out that the difference of SNR according to ROI location was very high, and thus a spatial noise distribution was not uniform. Also, 95% confidence interval through Blend-Altman plot is the widest, and thus the conformity degree with a two region measurement method using the standard single channel head coil is low. By directly comparing an AAPM method, which serves as a standard of a performance evaluation test of a magnetic resonance imaging device under the same image acquisition conditions, an NEMA method which can accurately determine the noise level in a signal region and the methods recommended by manufacturers of a magnetic resonance imaging device, there is a significance in that we quantitatively verified the inaccurate problems of a signal to noise ratio using a two region measurement method when using a multi-channel coil and a parallel imaging technique of which method does not satisfy the preconditions that researchers could overlook.

본 연구는 다중채널코일과 병렬영상기법 이용 시 관행적으로 사용하고 있는 두영역측정법을 사용한 신호대잡음비 측정의 문제점을 알아보고자 하였다. 두영역측정법 사용 시 3가지 전제 조건에 만족하는 단일채널구상코일을 이용한 기준 SNR을 산출한 후, 다중채널코일과 병렬영상기법 이용 시 공신력 있는 기관에서 권고하는 방법과 전제 조건을 고려하지 않고 사용되어 문제가 되는 두영역측정법을 사용하여 SNR을 산출한 후 비교하였다. 다중채널코일과 병렬영상기법 이용 한 두영역측정법이 가장 높은 상대표준편차를 보여 낮은 정밀도를 나타내었고, ROI 위치에 따른 SNR 차이도 매우 높아 공간적으로 잡음의 분포가 균일하지 않음을 알 수 있었다. Blend-Altman plot 통한 95% 신뢰구간 간격도 가장 넓어 기준이 되는 단일채널구상코일을 이용한 두영역측정법 대비 일치도가 낮음을 알 수 있었다. 본 연구는 동일한 영상획득조건에서 자기공명영상장치 성능평가 시험의 표준이 되는 AAPM 방법과, 신호 영역 내에서 잡음 레벨을 정확히 결정할 수 있는 NEMA 방법, 그리고 자기공명영상장치의 제조사가 권고하는 방법을 직접적으로 비교함으로써, 연구자들이 간과할 수 있는 전제조건을 만족하지 않는 다중채널코일과 병렬영상기법 이용 시, 두영역측정법을 사용한 신호대잡음비의 부정확한 문제점을 정량적으로 증명하였다는데 큰 의의가 있다.

Keywords

References

  1. Firbank M, Coulthard A, Harrison R, et al : A comparison of two methods for measuring the signal to noise ratio on MR images. Physics in medicine and biology. 44(12), N261, 1999 https://doi.org/10.1088/0031-9155/44/12/403
  2. Bae SJ, Lim CH : 3T MR Spin Echo T1 Weighted Image at Optimization of Flip Angle. Journal of Radiological Science and Technology, 32(2), 177-182 2009
  3. Kaufman L, Kramer DM, Crooks LE, et al : Measuring signal-to-noise ratios in MR imaging. Radiology, 173(1), 265-7. 1989 https://doi.org/10.1148/radiology.173.1.2781018
  4. Dietrich O, Raya JG, Reeder SB, et al : Measurement of signal‐to‐noise ratios in MR images: Influence of multichannel coils, parallel imaging, and reconstruction filters. Journal of Magnetic Resonance Imaging, 26(2), 375-85, 2007 https://doi.org/10.1002/jmri.20969
  5. Robson PM, Grant AK, Madhuranthakam AJ, et al : Comprehensive quantification of signal-to-noise ratio and g-factor for image-based and k space-based parallel imaging reconstructions. Magnetic Resonance in Medicine. 60(4), 895-907, 2008 https://doi.org/10.1002/mrm.21728
  6. Murphy B, Carson PL, Ellis JH, et al : Signalto-noise measures for magnetic resonance imagers. Magnetic Resonance Imaging, 11(3), 425-8, 1993 https://doi.org/10.1016/0730-725X(93)90076-P
  7. Goerner FL, Clarke GD : Measuring signal-to-noise ratio in partially parallel imaging MRI. Medical physics, 38(9), 5049-57, 2011 https://doi.org/10.1118/1.3618730
  8. Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magnetic Resonance in Medicine. 34(6), 910-4, 1995 https://doi.org/10.1002/mrm.1910340618
  9. Steckner MC, Liu B, Ying L : A new single acquisition; two-image difference method for determining MR image SNR. Medical physics, 36(2), 662-71, 2009 https://doi.org/10.1118/1.3036118
  10. Deshmane A, Gulani V, Griswold MA, et al : Parallel MR imaging. Journal of Magnetic Resonance Imaging, 36(1), 55-72, 2012 https://doi.org/10.1002/jmri.23639
  11. Sodickson DK, Manning WJ : Simultaneous acquisition of spatial harmonics (SMASH); fast imaging with radiofrequency coil arrays. Magnetic Resonance in Medicine, 38(4), 591-603, 1997 https://doi.org/10.1002/mrm.1910380414
  12. Pruessmann KP, Weiger M, Scheidegger MB, et al : SENSE; sensitivity encoding for fast MRI. Magnetic resonance in medicine, 42(5), 952-62, 1999 https://doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
  13. Kellman P, McVeigh ER : Image reconstruction in SNR units; A general method for SNR measurement. Magnetic resonance in medicine, 54(6), 1439-47, 2005 https://doi.org/10.1002/mrm.20713
  14. Medicine AAoPi : Acceptance Testing and Quality Assurance Procedures for Magnetic Resonance Imaging Facilities. AAPM Report, No100. 2010
  15. Association NEM : Determination of signal-tonoise ratio(SNR) in diagnostic magnetic resonance imaging. NEMA standard publication MS, 1-2008, 2008
  16. Larsson EG, Erdogmus D, Yan R, Principe JC, Fitzsimmons JR : SNR-optimality of sum-ofsquares reconstruction for phased-array magnetic resonance imaging. Journal of Magnetic Resonance, 163(1), 121-3, 2003 https://doi.org/10.1016/S1090-7807(03)00132-0
  17. Wiens CN, Kisch SJ, Willig-Onwuachi JD, et al : Computationally rapid method of estimating signal- to-noise ratio for phased array image reconstructions. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine, 66(4), 1192-7, 2011 https://doi.org/10.1002/mrm.22893
  18. Imai H, Miyati T, Ogura A, et al : Signal-to-noise ratio measurement in parallel MRI with subtraction mapping and consecutive methods]. Nihon Hoshasen Gijutsu Gakkai zasshi, 64(8), 930-6, 2008 https://doi.org/10.6009/jjrt.64.930
  19. No.1 ATG : Quality assurance methods and phantoms for magnetic resonance imaging; Report of AAPM nuclear magnetic resonance Task Group No.1, 1989
  20. Steckner MC : A simple method for estimating the noise level in a signal region of an MR image. Med Phys, 37(9), 5072-9, 2010 https://doi.org/10.1118/1.3480511