• Title/Summary/Keyword: IS-algebra

Search Result 1,193, Processing Time 0.022 seconds

Γ - BCK-ALGEBRAS

  • Eun, Gwang Sik;Lee, Young Chan
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.9 no.1
    • /
    • pp.11-15
    • /
    • 1996
  • In this paper we prove that if Y is a poset of the form $\underline{1}{\oplus}Y^{\prime}$ for some subposet Y' then BCK(Y) is a ${\Gamma}$-BCK-algebra. Moreover, if X is a BCI-algebra then Hom(X, BCK(Y)) is a positive implicative ${\Gamma}$-BCK-algebra.

  • PDF

NORMAL BCI/BCK-ALGEBRAS

  • Meng, Jie;Wei, Shi-Ming;Jun, Young-Bae
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.265-270
    • /
    • 1994
  • In 1966, Iseki [2] introduced the notion of BCI-algebras which is a generalization of BCK-algebras. Lei and Xi [3] discussed a new class of BCI-algebra, which is called a p-semisimple BCI-algebra. For p-semisimple BCI-algebras, a subalgebra is an ideal. But a subalgebra of an arbitrary BCI/BCK-algebra is not necessarily an ideal. In this note, a BCI/BCK-algebra that every subalgebra is an ideal is called a normal BCI/BCK-algebra, and we give characterizations of normal BCI/BCK-algebras. Moreover we give a positive answer to the problem which is posed in [4].(omitted)

  • PDF

Strongly Solid Varieties and Free Generalized Clones

  • Denecke, Klaus
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.1
    • /
    • pp.33-43
    • /
    • 2005
  • Clones are sets of operations which are closed under composition and contain all projections. Identities of clones of term operations of a given algebra correspond to hyperidentities of this algebra, i.e., to identities which are satisfied after any replacements of fundamental operations by derived operations ([7]). If any identity of an algebra is satisfied as a hyperidentity, the algebra is called solid ([3]). Solid algebras correspond to free clones. These connections will be extended to so-called generalized clones, to strong hyperidentities and to strongly solid varieties. On the basis of a generalized superposition operation for terms we generalize the concept of a unitary Menger algebra of finite rank ([6]) to unitary Menger algebras with infinitely many nullary operations and prove that strong hyperidentities correspond to identities in free unitary Menger algebras with infinitely many nullary operations.

  • PDF

HYERS-ULAM-RASSIAS STABILITY OF ISOMORPHISMS IN C*-ALGEBRAS

  • Park, Choonkil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.159-175
    • /
    • 2006
  • This paper is a survey on the Hyers-Ulam-Rassias stability of the Jensen functional equation in $C^*$-algebras. The concept of Hyers-Ulam-Rassias stability originated from the Th.M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. Its content is divided into the following sections: 1. Introduction and preliminaries. 2. Approximate isomorphisms in $C^*$-algebras. 3. Approximate isomorphisms in Lie $C^*$-algebras. 4. Approximate isomorphisms in $JC^*$-algebras. 5. Stability of derivations on a $C^*$-algebra. 6. Stability of derivations on a Lie $C^*$-algebra. 7. Stability of derivations on a $JC^*$-algebra.

  • PDF

AN EXTENDED NON-ASSOCIATIVE ALGEBRA

  • Choi, Seul-Hee
    • Honam Mathematical Journal
    • /
    • v.29 no.2
    • /
    • pp.213-222
    • /
    • 2007
  • A Weyl type algebra is defined in the paper (see [2],[4], [6], [7]). A Weyl type non-associative algebra $\bar{WN_{m,n,s}}$ and its restricted subalgebra $\bar{WN_{m,n,s_r}}$ are defined in the papers (see [1], [14], [16]). Several authors find all the derivations of an associative (Lie or non-associative) algebra (see [3], [1], [5], [7], [10], [16]). We find Der($\bar_{WN_{0,0,1_n}}$) of the algebra $\bar_{WN_{0,0,1_n}}$ and show that the algebras $\bar_{WN_{0,0,1_n}}$ and $\bar_{WN_{0,0,s_1}}$ are not isomorphic in this work. We show that the associator of $\bar_{WN_{0,0,1_n}}$ is zero.

Efficient Evaluation of Path Algebra Expressions

  • Lee, Tae-kyong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.1
    • /
    • pp.1-15
    • /
    • 2000
  • In this paper, an efficient system for finding answers to a given path algebra expression in a directed acylic graph is discussed more particulary, in a multimedia presentration graph. Path algebra expressions are formulated using revised versions of operators next and until of temporal logic, and the connected operator. To evaluate queries with path algebra expressions, the node code system is proposed. In the node code system, the nodes of a presentation graph are assigned binary codes (node codes) that are used to represent nodes and paths in a presentation graph. Using node codes makes it easy to find parent-child predecessor-sucessor relationships between nodes. A pair of node codes for connected nodes uniquely identifies a path, and allows efficient set-at-a-time evaluations of path algebra expressions. In this paper, the node code representation of nodes and paths in multimedia presentation graphs are provided. The efficient algorithms for the evaluation of queries with path algebra expressions are also provided.

  • PDF

BANACH FUNCTION ALGEBRAS OF n-TIMES CONTINUOUSLY DIFFERENTIABLE FUNCTIONS ON Rd VANISHING AT INFINITY AND THEIR BSE-EXTENSIONS

  • Inoue, Jyunji;Takahasi, Sin-Ei
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1333-1354
    • /
    • 2019
  • In authors' paper in 2007, it was shown that the BSE-extension of $C^1_0(R)$, the algebra of continuously differentiable functions f on the real number space R such that f and df /dx vanish at infinity, is the Lipschitz algebra $Lip_1(R)$. This paper extends this result to the case of $C^n_0(R^d)$ and $C^{n-1,1}_b(R^d)$, where n and d represent arbitrary natural numbers. Here $C^n_0(R^d)$ is the space of all n-times continuously differentiable functions f on $R^d$ whose k-times derivatives are vanishing at infinity for k = 0, ${\cdots}$, n, and $C^{n-1,1}_b(R^d)$ is the space of all (n - 1)-times continuously differentiable functions on $R^d$ whose k-times derivatives are bounded for k = 0, ${\cdots}$, n - 1, and (n - 1)-times derivatives are Lipschitz. As a byproduct of our investigation we obtain an important result that $C^{n-1,1}_b(R^d)$ has a predual.

JORDAN HIGHER DERIVATIONS ON TRIVIAL EXTENSION ALGEBRAS

  • Vishki, Hamid Reza Ebrahimi;Mirzavaziri, Madjid;Moafian, Fahimeh
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.247-259
    • /
    • 2016
  • We first give the constructions of (Jordan) higher derivations on a trivial extension algebra and then we provide some sufficient conditions under which a Jordan higher derivation on a trivial extension algebra is a higher derivation. We then proceed to the trivial generalized matrix algebras as a special trivial extension algebra. As an application we characterize the construction of Jordan higher derivations on a triangular algebra. We also provide some illuminating examples of Jordan higher derivations on certain trivial extension algebras which are not higher derivations.

d-ISOMETRIC LINEAR MAPPINGS IN LINEAR d-NORMED BANACH MODULES

  • Park, Choon-Kil;Rassias, Themistocles M.
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.249-271
    • /
    • 2008
  • We prove the Hyers-Ulam stability of linear d-isometries in linear d-normed Banach modules over a unital $C^*-algebra$ and of linear isometries in Banach modules over a unital $C^*-algebra$. The main purpose of this paper is to investigate d-isometric $C^*-algebra$ isomor-phisms between linear d-normed $C^*-algebras$ and isometric $C^*-algebra$ isomorphisms between $C^*-algebras$, and d-isometric Poisson $C^*-algebra$ isomorphisms between linear d-normed Poisson $C^*-algebras$ and isometric Poisson $C^*-algebra$ isomorphisms between Poisson $C^*-algebras$. We moreover prove the Hyers-Ulam stability of their d-isometric homomorphisms and of their isometric homomorphisms.

CONSTRUCTION OF Γ-ALGEBRA AND Γ-LIE ADMISSIBLE ALGEBRAS

  • Rezaei, A.H.;Davvaz, Bijan
    • Korean Journal of Mathematics
    • /
    • v.26 no.2
    • /
    • pp.175-189
    • /
    • 2018
  • In this paper, at first we generalize the notion of algebra over a field. A ${\Gamma}$-algebra is an algebraic structure consisting of a vector space V, a groupoid ${\Gamma}$ together with a map from $V{\times}{\Gamma}{\times}V$ to V. Then, on every associative ${\Gamma}$-algebra V and for every ${\alpha}{{\in}}{\Gamma}$ we construct an ${\alpha}$-Lie algebra. Also, we discuss some properties about ${\Gamma}$-Lie algebras when V and ${\Gamma}$ are the sets of $m{\times}n$ and $n{\times}m$ matrices over a field F respectively. Finally, we define the notions of ${\alpha}$-derivation, ${\alpha}$-representation, ${\alpha}$-nilpotency and prove Engel theorem in this case.