BIAYH B A R2A) A5 A1E (20003)

Efficient Evaluation of Path
Algebra Expressions

Tae-kyong Leex

Abstract In this paper, an efficient system for finding answers to a given path algebra expression in
a directed acylic graph is discussed, more particulary, in a rmuitimedia presentration graph. Path algebra
expressions are formulated using revised versions of operators next and until of temporal logic, and the
comnected operator. To evaluate queries with path algebra expressions, the node code system is
proposed. In the node code system, the nodes of a presentation graph are assigned binary codes (node
codes) that are used to represent nodes and paths in a presentation graph. Using node codes makes it
easy to find parent-child, predecessor-sucessor relationships between nodes. A pair of node codes for
connected nodes uniquely identifies a path, and allows efficient set-at-a-time evaluations of path algebra
expressions. In this paper, the node code representation of nodes and paths in multimedia presentation
graphs are provided. The efficient algorithms for the evaluationof queries with path algebra expressions

are also provided.

1. Introduction

In this paper, an efficient system for finding answers
to a given path algebra expression in a directed acylic
graph is discussed. Queres specify path expressions
using operators next, until and connected. Among these
operators, the semantics of next and until are similar to
the semantics of next and until opertors of temporal
logicl5]. However, the operators used in the queries are
defined on paths of a directed acyclic graph. In a
similar way, the comnected operator has semantics
similar to the operator eventually of temporal logic.
Operators next, until and connected allow us to find and
extract paths in a directed acyclic graph.

Directed acyclic graphs are used to model data in
many applications. The approach using multimedia
databases as a general application is presented here
where directed acyclic graphs are naturally used as

* School of information design at ulsan University

objects in the database. In the fields of digital libraries,
electronic classroom and distance leamning, the tasks of
creating, viewing, querying and manipulating multimedia
presentations from databases will be very common.
Figure 1.1 shows a presentation which is in the form of
a directed acyclic graph (DAG) with nodes representing
multimedia strreams. A stream can be of type video,
audio, text, or image. A stream of type video consists
of a sequence of frames, where each frame contains
content objects and relationships among content objects.
Figure 1.2 gives an object-oriented data model for
presentation graphs, streams, frames and content
objects.

Example 1.1; The multimedia presentation in Figure
1.1 depicts a hunting scene of a zebra by lions. After
the Africa (node A), a zebra herd (node B) and a
family of lions (node C) are observed as parallel
streams. The herd and lions are seen at the same time
and the adult lions approach the herd for the hunt (node
D). The cubs of the lions stay behind (node E). The
adult lions hunt down a zebra and their cubs join the
adults for a feast (node). The rest of the zebra herd

G e
adult lions

C E
a family
lions
< Figure 1.1> A multimedia presentation
class Pres_Graph [class Stream: inherits
name: String; from Pres_Node[
other attributes; graph-in: Pres_Graph;
Nodes: {Pres_Node}; child-nodes; {Pres_Node}:
Edges' {Pres_Edge}]; objects; {C_Object};
other attributes];
class Pres_Node [
name: String; class Frame[
type: String; name: String;
rep_frame: <Frame>; objects: {C_Object);
other attributes]; other attributes};
class Pres_Edge class C_Object [
[<Pres_Node>]; name: String;
frame-in: Frame;
* [], {}, <> denote tuple, set and other attributes];

sequence objects, respectively

< Figure 1.2> A data model for multimedia presentation graphs

flee (node F). Finally
hyenas are shown approaching the secen (node H).

For querying purposes, assertions on the nodes of
presentation graphs can be made based on the content
objects they contain. These assertions are specified in
the form of predicates. For example, node D satisfies
the following predicates:

» node D contains the content object zebra herd,

- node D contains the content object adult lions.

In this paper, GCalculus/S[10] is used to illustrate
queries on presentation graphs (a detailed presentation
of GCalculus/S is given in [10]).

Example 1.2 The query "Give all paths where a
video stream with a zebra object is immediately

followed by a video stream with a lion object” can be
expressed in GCalculus as

{x! (3 g)(Pres_Graph(g) /\
(31, I2)(Stream(sD) /\ Stream(s2) /\ (51,52}
CgNodes /\
<<gx,s1>>{[s11)(3 01)(C_Object(ol) NolLname =
"zebra” /\ ol € sl.frame-in.objects)
Xx [[s2](3 o2)(C_Object(02)
"lion” /\ 02 € s2frame-in.objects)))}

/\ oZname =

This query asks for paths (of length 1) that satisfy
the formula p X(next) q, where p evaluates to true for
streams with zebra objects and q evaluates to true for
streams with lion objects. The paths that satisfy the
query for the presentaton graph in Figure 1.1 are <B
D> and <D G>,

The immediate precedence relationship between two
nodes of a DAG is captured by the X(next) operator.
The next operator is a binary operator (unlike the next

operator of temporal logic which is a unary operator).
The p X q relation holds for the path <vl1 v2> if

* p evaluates to true to vI.
+ q evaluates to true to v2. |

Example 1.3 The query “Give all paths between a
video stream with a zebra object and a video stream
with a lion object” can be expressed in GCalculus/S as

{(xI (3 g)(Pres_Graph(g) /\
(351, 3 s2)(Stream(sl) /\ Stream(s2) /\ {s1,s2}
CgNodes /\
<<gxs1>>[[s1] 3 o1)(C_Object(ol) Nolname =
*zebra” /\ ol € sl.frame-in.objects)
Cx [[s2]}(3 02X(C_Object(02)
"ion” /\ 02 & s2frame-in.objects))))

/\ oZpame =

This query asks for paths that satisfy the formula p
Clconnected) q, where p evaluates to true for stream
with zebra object and q evaluaes to true for streams
with lion objects. The paths that satisfy the query for
the presentation graph in Figure 1.1 are <B D>, <B

G>, and <D G>.

The operator C(connected) is used to assert the
existence of a path between two nodes in a graph.
The C operator is a binary operator. p C q relation
holds for a path <vl .. vi> if

* p evaluates to true for vl,

* q evaluates to true for vn.

Example 1.4 The query "Give all paths where the
zebra object appears in all consecutive streams until a
stream with a lion object” is expressed in GCalculus/S
as
{x| (3 g)(Pres_Graph(@ /\

(Is1, Is2)(Stream(s) /\ Stream(s2) /\ {s1,s2)
< g.Nodes /\

<<gx,s1>>{[s11)(3 01)}C_Object(ol) Nolname =
"zebra” /\ ol € sl.frame-in.objects)

Ux [[s2](3 02)(C_Object(02)

"lion” /\ o2 € s2.frame-in.objects)))}

/\ o2name =

This query asks for paths that satisfy the forrmila p
Uluntil) q, where p holds true for the streams with a
zebra object and q holds true for streams with a lion
object. For the muitimedia presentation graph in Figure
1.1, the resulting paths for the query are <D G> and
<BD G>.

The semantics of repetition with a terminating
condition is captured by the U(until) operator which is
also a binary operator. p U q holds for a path <vi ..
vn~1 vn> if

* p evaluates to true for all vl, ..., vn-L.

* q evaluates to true for vn.

In this paper, the algorithms to efficiently implement
the path algebra operators X, C, and U are given.
Traditional graph algorithms for checking adjacency or
connectivity of every pair of nodes in a graph can be
very time consuming when used in implementing path
algebra operators. The approach in this paper is to use
an encoding system, called the node code system. The
node code system assigns binary code to nodes of a
presentation graph, and the node codes are used to

-3-

efficiently evaluate path algebra operators. This
approach eliminates the need to traverse presentation
graphs.

In section 2, the related work are presented briefly.
Section 3 describes the generation of node codes,
presents their properties, and defines two different
orders; namely, alphabetical ordering and level-first
ordering on node codes. Section 4 gives -efficient
evaluations for the path algebra operators X, C, and U.
Section 5 describes the approach to the implementation
of the query processing techniques discussed in section
4. Section 6 is the conclusion.

2. Related Work

Graphs in databases have been used by different
researchers in different contexts. In the database query
and visualization systems G+[34] and Hy+(12], the
database is visualized as a graph, and a query is
forrmilated as a set of graphs which are viewed as
pattemns to be matched against the database. In the
Graph-Oriented Object Database model[6,7,8], the
emphasis is on representing the database scheme and
the database instance as a graph. Database queries are
expressed using five primitive graph operations (node
and edge additions and deletions, and a duplicate
eliminator). There is also a graphical user interface for
formulating queries and visualization of results[6]. In
this model, objects are represented as nodes in a graph,
and relationships and properties of objects are
represented as edges. Another alternative, which is
used in many object-criented data models, is to
represent relationships of objects as object-valued
attributes, and to use “path expressions” with an
SQL-like language, such as OQL. However, for
applications where graphs are needed to model data,
supporting graphs explicitly in the data model and in
the query language (in addition to supporting other bulk
types such as lists and sets) is very beneficial
GraphDB is a good example which explicitly allows
modeling and querying of graphs[9]. In GraphDB, there
are three kinds of object classes, namely, simple classes,
link classes, and path classes. A link class has

references to source and target simple objects (in
addition to having other components). Path objects are
defined using regular expressions of link objects.
GraphDB provides an SQL-like query language with
multiple levels of queries and function calls.

Mostly, the research on graphs in databases has
concentrated on modeling graphs and query languages
on graphs. Although these query languages have the
expressive power for forrmulating complex queries, the
evaluation of such queries are quite expensive due to
graph traversals that are required during evaluation. 1
am not aware of any work that takes a systematic
approach to eliminate explicit graph traversal during the
evaluation of queries with graphs.

In the context of multimedia databases, temporal
operators such as next, until, eventually have been used
for expressing queries on muiltimedia streams. In[12]
and ([11], these temporal operators are used in a
language called Hierarchical Temporal Logic (HTL), for
similarity based retrieval of video segments. The video
streams are considered to consist of hierarchically
structured video segments, and the temporal operators
can be used to specify properties of sequencies of video
segments at any level However, although video
segment sequences can be queried at different levels,
the segments in the same level appear to be in a single
continum, that is, without any branching. This is not
the case when paths in directed acyclic graphs, that can
only be modeled with branching time[10] as in
Computational Tree Logic[5], are considered.

3. Physical Data Model

Now, a scheme, called the node code system, that is
used for the evaluation of operators and for the
identification of paths in a DAG with a single source
node (a node with no incoming edges). These codes
are in the form of binary strings. Although every node
code uniquely identifies a node, a node may have more
than one node codes, if that node is connected from the
source node by muiltiple different paths. Given all the
node codes of two nodes, it is easy to check if the two

-4 -

nodes satisfy the parent-child relationship (next), or if
they are connected (connected) via simple comparisons.

If there exists a path between two nodes, it is possible:

to create the paths between these two nodes using their
node codes without traversing the nodes of the actual
path.

3.1 Assigning Node Codes

A DAG, that has a single source node, is
assumed. If it has more than one source
nodes, it is possible to convert the DAG into a
DAG with one source node by simple adding an extra
node into the graph and making a connection (by an
edge) from the new node to every source node of the
DAG.

The folowing procedure is used to assign node codes
to the nodes of a DAG. Node codes are denoted as a
sequence of binary digits (binary strings) such as <al
a2 .. am> where each ai (=l..m) is either 0 or L
Binary string, X* indicates 0 or more repetition of X,
where X is either 0 or 1, or a substring given in
parenthesis. Similarly, X+ indicates one or more
repetition of X and Xi indicates exactly i repetition of
X. The source node is assigned the node code 1. The
initial call to the algorithm is Assign Node_Code(source,
1). :

Algorithm: Assign_Node_Code(v,<al a2 ... ax>)
where ai = 0 or 1, for all i=1..x.

Input: A node v, a node code <al a2 .. ax> of node
v.

Output: Children of node v are assigned new node
codes. .

1 c=number of children of v (Cl ... Cc are the children
of v)

2 fori=l to c.do

3 begin

4 Add node code <al .. ax 0 li-1> to the list of
node codes for Ci

5 Assign Node_Code(Ci, <al .. ax 0 L-1>)

6 end.

‘Example 3.1:

In Figure 3.1, an ordered tree, that shows the nodes
of the DAG in Figure 1.1 and the node codes assigned
to them, is seen. A depth-first traversal of the tree in
Figure 31 gives the order of nodes visited by the
algorithm Assign_Node_Code. Note that some nodes are
visited more than once, and are assigned more than one
node codes. In fact, the number of node codes for a
node v is equal to the number of paths from the source
node to v. For example, there are two different paths
from the source node A to node D (<A B D> and <A
C D>) and therefore there are two node codes (100,
1010) assigned to node D (See Figure 32). The source
node has only one node code (1).

In the useful
properties of node codes are illustrated and
highlighted.

following lemmas, some

Lemma 3.1: Let v be a node with node code <al ...
ax> and V0, ... vn be the children of v. Then the node
code of vl=<al .. ax 0 li>.

The proof of Lemma 31 is obvious from line 4 of the
Assign Node_Code algorithm.

Corollary 3.1: If a node v has the node code <al
.. ax 0 1*> then its parent has the node code <al ..
ax>.

Lemma 3.2: All children of a node are assigned
different node codes.

Node C has the node code 101.
Children of node C are nodes D and E. Node codes for
the children of node C have the prefix 101 and the form
10101*. Node D has the node code 1010 which is
equivalent to 101010. Node E has the node code 10101
which is equivalent to 101011

Theorem 3.1: A node code can be assigned to only

one node in a directed acyclic graph.

Proof: This lemma is proven by induction on the
length of node codes.

-5-

Al
B, 10

C, 101
D, 100 D, 1010 E, 10101
F, 1000 G, 10001 F, 10100 G, 101001 G, 101010
H, {0000 H, 100010 H, 101000 H, 1&10010 H, 1010100
<Figure 3.1>. Node code assignment for the nodes of DAG in Figure 1.1
B D F
B o
—.‘
1010 10100 H
A 10000
oo
100010
(o} E G 1010010
101 10101 10001 1010100
—__’, |
101001

101010

<Figure 3.2> DAG of Figure 1.1. with the assigned node codes

hypothesis: All node codes of lengthl are assigned to
different nodes. This is obviously true as there is only
one node code of length 1 and it is assigned to the
source node.

induction stepr Let us assume that all node codes of
length < k are assigned to different nodes. Let us
further assume that two nodes, vl and v2, are assigned
the same node code of length k. Their parents, pvl
and pv2, can not be the same as no children of a node
are assigned the same node code by Lemma 32.
Therefore, their parents pvl and pv2 should be different

nodes, and their node codes should be the same due to
Corollary 3.1. However, the node codes of parents pvl
and pv2 should have a length less than k, which leads
us to a contradiction as we assumed that node codes of
length < k are assigned to different nodes in our
induction step.

It is easy to see that node codes are binary strings in
the form 1(01*)*. The source node has node code 1
and line 4 of the algorithm Assign Node Code only
adds Ol*s. It should be clear at this point that if a
node vl is an ancestor of node v2, and vl has a node

—-6-

code <al ..
(01%)+>.

ax>, then v2 has node code <al .. ax

Theorem 3.2: A node code for a node v defines a
unique path from the source node to v.

Proof: Since node v is an descendent of the source
node and the source node has the node code 1, then v
has a node code of the form <1 Al .. Am> where each
Ai (i=1.m) is a binary string of the form (01*). This
node code defines a path from the source node to v
traversing the nodes with node codes <l AD>, <1 Al
A2> .., <1 Al .. Am>, in order. Since each node
code is assigned to a unique node (by Theorem 3.1),
this path is unique.

Corollary 3.2: Assume that two nodes, vl and v2,
have node codes <al .. ax>, and <al .. ax Al .. Am>
(where each Ai (i=1.m) is a binary string of the form
(01%)), respectively. Then, vl and v2 are connected,
and these two node codes define a unique path of
length m from vl to v2.

From Corollary 3.2, it is clear that vl is an ancestor
of v2 considering their node codes. These node codes
define a unique path from vl to v2, traversing the

AZ>, .., <al ..ax Al .. Am>.

Example 32 The node codes 101 and 101000 of node
C and H, respectively, define a path of length 3
between node C and node H in Figure 31. This path
is <101 1010 10100 101000>, or <D D F H>.

Definition 3.1: A path instance is path between
two nodes and is uniquely specified by a pair of node
codes. In other words, a path instance is a 2-tuple of
the form (cl, ¢2) where cl is a node code for the first
node of the path and ¢2 is a node code for the last
node of the path, and c2 is of the form c1(01#)+.

If a path instance has the length O, the first and the
last nodes are the same and it can simply be denoted
by a single node code.

3.2 Ordering of Node Codes

Two different orderings on node codes are defined.
The first ordering is the alphabetical ordering.
Alphabetical ordering corresponds to a depth-first
traversal of the graph. The node codes are assigned to
the nodes in alphabetical order by the recursive

nodes with node codes <al .. ax Al>, <al .. ax Al algorithm Assign Node Code of Section 31. One can
alphabetical ordering level-first ordering
1 (A) 1 (A)
10 (B) 10 (B)
100 (D) 101 ©)
1000 (F) 100 (D)
10000 (H) 1010 (D)
10001 (G) 10101 (E)
100010 (H) 1000 (F)
101 (9] 10001 Q)
1010 D) 10100 (F)
10100 (F) 101001 Q)
101000 (H) 101010 (&)
101001 (@) 10000 (H)
1010010 (H) 100010 (H)
10101 (E) 101000 (H)
101010 (G) 1010010 (H)
1010100 (H) 1010100 (H)

<Figure 3.3> Node code orderings for the DAG in Figure 1.1.

-7-

think of the alphabetical order as an ordering of the
strings generated by a language whose letters are 0 and
1, where- 0 has precedence over 1. The most useful
properties of alphabetical ordering are illustrated by the
next two lemmas.

Lemma 3.3: If node v has a node code <al ... ax>,
then all nodes connected from v have a node code that
comes after <al .. ax> in alphabetical ordering.

Proof of Lemma 3.3 follows from Corollary 3.1. For a
node v with a node code <al .. ax>, ancestors of v
have node codes which are prefixes of <al .. ax>. In
an alphabetical order, prefix of a word precedes the
word.

Lemma 3.4: If node v has a node code <al .. ax>,
then all nodes connected from v have node codes that
come before <al ... ax 1> wrt alhabetical ordering.

Proof of Lemma 34 also follows from Lemma 3.1. K
a node v has a node code <al .. ax>, then each of its
successors has a node code with prefix <al .. ax 0>,
which comes before <al .. ax 1> wrt alphabetical
ordering. Note that a node with the node code <al ...
ax 1> is a sibling of node v.

Alphabetical ordering is used in limiting the search
for comnectivity to a closed range. This range is
defined by lemmas 3.3 and 34 for each node code. In
other words, all node codes of nodes comnected from
node v with node code <al .. ax> are between <al ..
ax> and <al .. ax 1> in alphabetical ordering. This
property is utilized in evaluating the connected operator
in path algebra expressions (see section 5).

Example 3.3: Considering the DAG in Figure
3.2, node B is an ancestor of node F. The
node for node B is 10. Node F has the node
code 1000 which comes after the node code 10
(Figure 3.2) and before the node code 101 wrt
alphabetical ordering, as ilisted in Figure 3.3.

Anocther ordering that is used on the node codes is

the level-first ordering. Level-first ordering
corresponds to a breadth-first travrersal of the DAG.
However, in level-first ordering, children are visited
with respect to alphabetical ordering of their
corresponding node codes. As an example, a breadth
first traversal of the nodes in Figure 31 gives the
level-first ordering of the node codes of the DAG in
Figure 1.1. This is shown in Figure 3.3.

Remark 3.1: The numbe of 0's in a node code for
node v is equal to the length of a path from the source
node to the node v, which is identified by that node
code of v.

To sort the node codes with respect to level-first
ordering, first, node codes are sorted with respect to the
number of 0’'s they contain. The sorting among the
node codes with the same number of (s is done wrt
alphabetical ordering. Level-first ordering puts node
codes of sibling nodes together. This ordering is
utilized in the evaluation of the next operator.

Lemma 3.5: Let nodes v0 ... vn be the children of a
node v. Then, node codes of v0 .. vn are clustered
together wrt level-first ordering.

Proof: If v has the node code <al .. ax> then each
of its children vi has node code <al .. ax 0 1li> for
i=0,..,n by Lemma 31. Lemma 35 follows from the
fact that level-first ordering comresponds to a
breadth-first traversal of the DAG. .

Example 3.4: Nodes D and E are sibling nodes, as
they are the children of node C. Node codes for nodes
D and E are 1010 and 10101, respectively. These node
codes appear one after another in level-first ordering
(Figure 3.3).

4. Path Algebra Operators

When only node and edge information is used, finding
paths that satisfy a given predicate in a directed acyclic
graph requires the traversal of nodes in the graph
However, graph traversal in a database introduces extra
disk /O (possibly due to muitiple accesses in the

—-8—

traversal of the same set of nodes in different paths of
the graph). This actually comresponds to a

path-at-a-time evaluation of the predicates that are

specified in queries. Path-at-a-time approach is also
space-inefficient as it requires handling of varable size
paths (node sequences) during the evaluation of queries.
In the approach adopted here, the node codes for
representing paths and paths along a directed acyclic
graph are used, which allows for efficient set-at-a-time
evaluations of queries on paths, With set-at-a-time
approach, it is possible to create optimurn and efficient
evaluation plans, which is especially important for
queries with complex predicates on paths.

The path algebra with the three operators, X(next),
Clconnected) and Uluntil), is introduced to specify
evaluation plans for queries on directed acyclic graphs
using the node code system. The operators X, C, and
U are binary operators that take two sets of path
instances as input and retum a set of path instances
that satisfy the semantics of the operators which were
discussed in section 1.

A path algebra expression is defined as follows: |

1) A predicate is a path algebra expression. In this
case, the path algebra expression is satisfied by path
instances of length O (single nodes).

2) (pexpl X pexp2), (pexpl C pexp2), (pexpl U
pexp2) are path algebra expressions where pexpl and
pexpZ are path expressions.

Given two paths instances (ab, ae) and (bb, be)
satisfying path algebra expressions pexpl and pexp2,
respectively, the evaluation of (pexpl X pexp2) retums
the path instances (ab, be) if the node code bb is a
child of ae (i.e, bb is of the form ae0l*). Similarly, the
evaluation of (pexpl C pexp2) retmns the path
instance (ab, be) if the node code bb is a sucessor of
ae (bb is of the form ae(01#)+). Evaluation of the path
algebra expression (pexpl U pexp?) retums the path
instances where the path algebra expression pexpl is
repeatedly satisfied one or more times before the path
algebra exprssion pexp2 is satisfied

5. Evaluation of Path Algebra Expressions

Using Node Codes

In the approach here, path algebra expressions are
evaluated set-at-a-time where the sets are collections
of path instances. All path instances that satisfy the
path algebra expression given in a query are output of
the query. Using path instances and node codes, the
actual traversal of the nodes along a path in the graph
is avoided during the evaluation of path algebra
EXpressions.

5.1 X(next)

A path algebra expression of the form (pexpl X
pexp2) is evaluated after the evaluation of pexpl and
pexp2 are done. It is assumed that all path instances
that satisfy the path algebra expressions pexpl and
pexp2 are found and stored in tables A and B,
respectively. It is also assumed that the path instances
in A are denoted as (aib, aie) (i=l.n where |Al=n), and
the path instances in B are denoted by (bjb, bje)
(5=1.m where {Bl=m). aib and aie dencte the first and
the last node codes for the path instances in table A.
Similarly, bjb and bje denote the first and the last node
codes of the path instances in table B. When
comparing two path instances PIA from table A and
PIB from table B to check if they satisfy the next
relation, the only thing to be done is to compare the
last node code in PIA (aje) and the first node code in
PIB (bjb). (pexpl X pexp2) evaluates to true, only if
the node with the node code bje is a child of the node
with the node code aie.

It starts with sorting tables A and B in levle-first
ordering. Path instances in table A are sorted on the
end node codes (aie), and the path instances in table B
are sorted on the beginning node codes (bjb).
Level-first ordering puts all ancestors before successors,
and the same-level nodes (nodes with the same number
of 0's) are ordered alphabetically.

Lemma 5.1: If vl and v2 are two nodes with node

Table A Table B
10 101
100 10101
1010 10001
1000 101001
10100 101010
101001 100
101001
101010

<Figure 5.1.a>. Input Tables

codes <al .. ax> and <bl .. by>, respectively, and
<al .. ax> precedes <bl .. by> in level-first ordering,
the set of node codes for the children of vl (f vl has
children) precede the set of node codes for the children
of v2 (if v2 has children).

Proof: If <al .. ax> and <bl .. by> are in the
same level (ie, they contain the same number of Q's)
and <al .. ax> precedes in alphabetical order, <bl ..
by>, then the node codes of children of vl (that are
derived from <bl ... by>) precede the node codes of the
children of v2 (that are derived from <bl .. by>) in
level-first ordering. If <al .. ax> is at a higher level
(contains less 0’s) than <bl ... by>, the node codes of
the children of vl will be at a higher level than, and
therefore preceding node codes of children of v2.

Using Lemma 51, all parent—child relationships
between node codes can be dicided by a single pass
over the sorted tables A and B. The following rules
make it possible to compare node codes ale and bjb
from tables A and B systematically.

1. I aie is the parent of bjb then the path instance
(ajb, bje) is an output. Proceed with getting the next
path instance in table B (b(j+D)b, b(j+l)e), and check if
b(+1)b is a child of aie.

2. If aie is not a parent of bjb, then there are two
possibilities,

a) bjb precedes the first child of aie (bjb < aie0) wrt
level-first ordering. Then all children of aie will appear
after bjb, and, read the next path instance in table B
and check it with (aib, aie).

Table A ! _|_Table B
10 1101
100 s 100
1010 R 1010
1000 NG 10101
10001 O GOAL 10001
10100 101001
| 101001 4 101010
101010

<Figure 5.1.b>. Sorted input tables and EvalNext

b) bjb succeeds all children of aie (i.e., comes after
aie0l* wrt level-first sorting), in which case it can be
concluded that there are no more children of aie in table
B. So, read the next path instance in table A (a(i+1)b,
a@i+l)e), and check if a(i+l)e satisfies the next
relationship with bjb.

Lemma 52: Rules 1 and 2 are sound and

complete in the sense that all path instances
that satisfy a given path algebra expression
(pexpl X pexp2) are output and no other
instances are output.

Proof: The soundness of the above rules is trivial
from rule 1 since the path instances are produced as
outputs if the next relationship holds true. To show
the completeness for the above rules, it has to be
shown that the rules do not miss any possible next
relationship for aie. By Lemma 35, it is known that all
children of aie are clustered together. Since the first
child of aie has the smallest node code (wrt level-first
ordering) among children, aie is not compared to node
codes that precede aie0 (rule 2.a). Similarly, it is not
necessary to compare node codes that succeed the
largest child of aie as the child node codes are clustered
wrt level-first ordering (rule 2b). Finally, it has to be
shown that the parent of bjb is not missed Path
instances in table A are discarded only by rule 2b.
Since path instances, which have children with node
codes smaller than bjb wrt level-first ordering, the
parent of bjb is not missed. Hence, the rnules above are

10

complete.

Example 5.1: Let us give an example to
demonstrate the evaluation of path algebra expressions
of the form (pexpl X pexp2). The query of Example
1.2 asks for path instances that satisfy p X q, where p
evaluates to true for streams with a zebra object and q
evaluates to true for streams with a lion object. From
Figure 1.1, it is shown that p is satisifed by the nodes
B, D, G F and q is satisifed by the nodes C, E, D, G.
In this case, since pexpl and pexpZ are simple
predicates, path instances of length 0, which are denoted
by single node codes, are used. Tables A and B that
are input to the rules, are as shown in Figure 5.1a
Figure 5.1b shows the tables A and B after the node
codes are sorted using level-first ordering.

The comparison between the node codes in two tables
are shown by two headed arrows in Figure S1.b. The
order of the comparisons are indicated by numbers on
the lines. A thicker line represents a next relationship
between two node codes. A solid thin line indicates a
condition matching rule 2a. and a dashed thin line
indicates a condition matching rule 2b. First, node
codes 10 and 101 are compared Since the node code
101 is less than the node code 100 (first child of node
code 10) wrt level-first ordering, we progress to the
next node code in table B. The second comparison is
between 10 and 100. Since there is a next relationship
between 10 and 100, path instance (10, 100) is added to
the output. The third comparison is between node
codes 10 and 1010. 1010 is larger than 1001* (any child
of node code 10) wrt level-first ordering. Hence, we
proceed with the next node code in Table A. This
continues until all path instances in either table are
exhausted. As a result, the path instances (10, 100),
(100, 10001), and (1010, 101001) are output.

EvalNext(A,B):
X(next) operator
input: a table A that keeps all path instances that
satisfy pexpl (IAl = n)

a table B that keeps all path instances that
satisfy pexp2 (IB] = m)
output: all path instances that satisfy the path

Algorithm to Evaluate the

algebra expression (pexpl X pexp2)

1 Sort the path instances in table A using level-first
ordering on aie (the last node code in the path
instance) for all i=1.n

2 Sort the path instances in table B using level-first
ordering on bjb (the first node code in the path
instance) for all i=1.m

3 &=l =1

4 Read the entry (aib, aie) from table A
5 Read the entry (bjb, bje) from table B
6 while (TRUE) do
7 begin

8 if (bp is next to ae) then /* by is of the
form ai01° */

9 begin

10 output (am, bje) as it satisfies (pexpl X
pexp2);

11 i=i+l;

12 if G <m) then Read the entry (bp, bje)
from table B

13 else return /* no more path instances in
table B */
14 end

15 elsief (bp is not next to ae and ai0>bj
wrt level-first ordering) then

16 begin

17 =i+l

18 if (j <m) then Read the entry (bjs, bje)
from table B

19 else return /* no more path instances
in table B */
20 end

21 elsief (bjp is not next to ae and ai0<bjp
wrt to level-first ordering) then

22 begin

23 i=i+];

24 if (i <n) then Read the entry (aw, aie)
from table A

25 else return /* no more path instances
in table A */
26 end

_11..

Table A 1 - Table B
10 : 2 » 100
100 $ 10001
1000 | 7 101
10001 /“’u/- 1010
1010 1 : = 101001
10100 14
101001 | > 101010
10101

<Figure 5.2> Sorted input tables and the EvalConnected Algorithm

27 end

The EvalNext algorithm takes O(m logm + n logn)
time to find out the path insances that satisfy the path
algebra expression (pexpl X pexp2) once the evaluation
pexpl and pexp2 are done. Sorting of the tables is the
dominant step in the algorithm. Once the tables are
sorted, finding the path instances that satisfy (pexpl X
pexp2) takes O{m+n) time as each path instance in any
of the tables A and B is read once.

An altemnative is to use the brutal force approach that
would require O(mn) time to match every path instance
in table A to every path instance in table B and check
if they satisfy the next relationship.

5.2 C(connected)

Evaluation of the connected operator is similar to that
of the next operator. A path algebra expression of the
form (pexpl C pexpl) can be evaluated once the
evaluation of pexpl and pexp2 are done:! the result is
the list of all path instances that satisfy the expression.
It is again assumed that all path instances satisfying
path algebra expressions pexpl and pexp2 are already
found and stored in tables A and B, respectively. After
that, the first step is to sort the tables in alphabetical
ordering. Path instances in table A are sorted on end
node codes (aie), and the path instances in table B are
sorted on beginning node codes (bjb).

As the alphabetical ordering corresponds to a
depth-first traversal of the DAG, node codes of the
successors of a node v always come between the node
code of v and the node code of the node that follows v
in the same level (that is a sibling or a cousin of v).
This is specified by Lemma 33 and Lemma 34 If
node v has the node code <al .. ax>, then all nodes
that are descendants of v have node codes of the form
<al .. ax (01*)+>, al of which are less than <al ... ax
1>. This fact is made use in the rules to evaluate
expressions of the form (pexpl C pexp2).

In the evaluation of the connected operator, node
codes aie and bjb from tables A and B are compared
using the following rules.

1. I aie is an ancestor of bjb then ouput path instance
(aib, bje). Note the index j of table B as the
backtracking point. Check path instances that follow
(bjb, bje), untl a path instance in B that is not
connected from (aib, aie) is reached. Once all node
codes connected from aie are found, retum back to the
back-tracking point (bjb, bje), and read the next path
instance in table A (a(i+1)b, a(i+1e).

2. If aie is not an ancestor of bjb, then there are two
possibilities,

a) bib precedes, or equal to aie (bjb < aie) in
alphabetical ordering. This means that we have not
reached any ancestor of aie in table B yet, so we read
the next path instance in table B.

12

b: bijb succeeds aie (bjb > aie) .in alphabetical
ordering. Since bjb is not connected to aie, bjb should

also be greater or equal to (aiel) in alphabetical-

ordering, which means that there cannot be any
ancestor of aie among the path instances that follow
(bjb, bje) in table B. We read the next path instance
in table A

Backtracking is needed as a node code in Table B
can be comnected from more than one node code in
Table A For example assume that a node vl in Table
A is the grandparent of node v3 in Table B and node
v2 in Table A is the parent of node v3. This suggests
that, after we find the connectivity relation between
nodes vl and v3, we have to backtrack in table B to
find the connectivity relation between nodes v2 and v3.

Example 5.2: let us give an example to
demonstrate the evaluation of path algebra expressions
of the form (pexpl C pexp2). Example 1.3 of section 1
asks for the path Instances that satisfy p C q, where p
evaluates to true for streams with a zebra object and q
evaluates to true for streams with a lion object.
Predicate p is satisfied by the nodes B, D, G, F and g
is satisfied by the nodes C, E, D, G Tabels A and B
that are iput to the rules are the same as in Figure
51a Tables A and B after the node codes sorted in
alphabetical ordering are shown in Figure 5.2.

‘The comparison between the node codes in two tables
are shown by two-headed arrows. The order of the
comparisons are indicated by numbers on the lines. A
thicker line represents a connected relationship between
two node codes. A thin line indicates that the two
node codes are not comnected. For example, the node
code 10 in table A is compared with node codes {100,
10001, 101}, two of them {100, 10001} being connected
from 10.

First, node codes 10 and 100 are compared. Since the
node code 10 is an ancestor of 100, the path instance
(10, 100) satisfies the desired relationship. We progress
to the next node code in table- B. The second
comparison is between 10 and 10001, and another
ancestor is found. In the next comparison, we see that

101 is not a successor of 10 and it is greater than 10,
so we backtrack to the first entry in table B (100) that
is connected from 10, and progress to the next entry in
table A (100). This continues untl we exhaust all
entries in table A.

EvalConnected(A,B): Algorithm to Evaluate the
Clconnected) operator
input: a table A that keeps all path instances that
satisfy pexpl (|Al = n)

a table B that keeps all path instances that
satisfy pexp2 (Bl = m)
output: all path instances that satisfy the path
algebra expression (pexpl C pexp2)
1 Sort the path instances in table A using level-first
ordering on aie (the last node code in the path
instance) for all i=1.n
2 Sort the path instances in table B using level-first
ordering on bjb (the first node code in the path
instance) for all i=1.m

3 &=l =1

4 Read the entry (aib, aie) from table A

5 Read the entry (bjb, bje) from table B

6 while (TRUE) do

‘7T begin

8 if (aie is connected to byp) then /* a0 is
a prefix of bj, */

9 begin

10 k:=j;

11 while (§j <m) and (ae is connected to
bin) do

12 begin

13 output (am, bj) as it satisfies (pexpl
C pexp2);

14 j=j+l;

15 if (§ <m) then Read the entry (bj,
bje) from table B

16 end

17 i=k;

18 1=i+l;

19 if (i <n) then Read the entry (ap, ai)
from table A

-13-

20 else return;

21 end

22 elsief (ae<bjp wrt alphabetical ordering)
then

23 begin

24 B=ivl;

25 if (i <n) then Read the entry (aw, ai)
from table A

26 else return;

27 end

28 elsief (ae =bp wrt to alphabetical
ordering) then

29 begin

30 =i+

31 if (j <m) then Read the entry (bjp, bje)
from table B

32 else return;

33 end

34 end

In the algorithm above, the sorting of tables A and B
takes O(n logn) and O(m logm), respectively. Once the
path instances are sorted in alphabetical order in both
tables, finding connected path instances takes O(m + n
+ 0) where n and m are the sizes of the tables A and
B, and o is the size of the output. The term o in the
complexity O(m + n + 0) result is due to the fact that
backtracking is done only when entries that satisfy the
connected relationship are found.

An altemative is to use the brutal force approach that
wauld require O(mn) time to mach every path instance
in table A to every path instance in table B and check
if they satisfy the connected relationship.

5.3 U(until)

The until operator basically captures the semantics of
repetition with a given terminating condition. The
evaluation of the until operator is also done by repeated
application of the next operator evaluation.

EvalUntil(A,B):
Uluntil) operator
input: a table A that keeps all path instances
that satisfy pexpl (JA] = n)

a table B that keeps all path instances
that satisfy pexp2 (IBl = m)
output: all path instances that satisfy the path
algebra expression (pexpl U pexp2)
1 ki=0;
2 while (Table B is not empty) do

Algorithm to Evaluate the

3 begin

4 Invoke FEvalNext(A, Bx) to find all path
that the path
expression (pexpl X pexp2).

instances satisfy algebra

5 Store the resulting path instances in an
auxiliary table B
6 end

In the algorithm above, note that the table A is
repeatedly used as an operand to the EvalNext
algorithm, it should be sorted in level-first order only
once, with complexity O(n logn). The table B, and Bl
through Bm (where m is the maximum number of
.repetitions of pexpl in the result of (pexpl U pexp2))
ishould be sorted as the other operands of algorithm
EvalNext. Overall complexity is O(m n logn).

6. Conclusion

The node code system is presented for efficient
evaluation of queries with path algebra expression for
application where the directed acyclic graphs are used
to model the data. In the node code system, for each
node in a directed acyclic graph, a node code is
assigned that uniquely identifies a path from the source
node to that node. A node may have more than one
node codes assigned to it if there are more than one
different paths that connect the source node to that
node. I two node codes are connected, then they
define a unique path between the two nodes they
belong to. Such node code pairs are called as path
instances, and are used in the evaluation of path

14

algebra expressions avoiding explicit graph traversals.
Without the graph travrsals, path algebra expressions
can be evaluated set-at-a-time
path-at-a-time) making it much more efficient. As
only two node codes are used to represent any path in
a directed acyclic graph, the burden
variable-length paths throughout the evaluation of a
path algebra expression is also avoided.

Efficient algorithms for the evaluation of path algebra
opeators X(next), U(until)) and C(connected) are
provided. Two orderings on node codes, namely
alphabetical ordering and level-first ordering, are defined
and used in evaluating the connected and next
operators. The use of these orderings help reduce the
complexity of the rules considerably from O(mn) to
O(m logm + n logn) where m and n are the sizes of
the input tables. In the algorithms, the sorting step
becomes the dominating step.

References

[1] M. Consens, A. Mendelzon, "GraphLog: A Visual

Fomalism for Real-Life Recursion”, ACM PODS
Conference, 1990.
2l M. Comsens, A. Mendelzon, "Hy+: A

Hygraph-based Query and Visualization System”, ACM
SIGMOD Conference, 1993.

[3]1 LF. Cruz, A. Mendelzon, P.T. Wood, "A Graphical

Query Language Supporting Recursion”, ACM
SIGMOD Conference, 1987.

[41 ILF. Cruz, A. Mendelzon, P.T. Wood, "G#:
Recursiove Queries without Recursion”, 2nd Int.
Conference on Expert Database Systems, 1988.

[6] E. Emerson, “Temporal and Modal Logic”,

Handbook of Theoretical Computer Science, Chapter
16, editor: L. Jeeuwen, pp 995-1072, Elsevier, 1990.

6] M. Gyssens, J. Van Den Bussche, J. Paradaens,
D. Van Gucht, "A Graph-Oriented Object Database
Model”, IEEE Trans on Knowledge and Data
Engineering, Aug., 1934.

(compared to

ofhand]ing:

(71 M. Gyssens, J. Paradaens, D. Van Gucht, "A
Graph-Oriented Object Database Model”, ACM PODS
Conference, 1990

[81 M. Gyssens, J. Paradaens, D. Van Gucht, "A
Graph-Oriented Object Model for Database End-User
Interfaces”, ACM SIGMOD Conference, 1990.

[9) RH. Guting, "A GraphDB: Modeling and Querying
Graphs in Databases”, VLDB Conference, 1994.

[10] Taekyong Lee, L Sheng, T. Bozkaya, N.H. Balkir,
ZM. Ozsoyoglu, G. Ozsoyoglu, "Querying Multimedia
Presentations Based on Content”, IEEE Trans on

Knowledge and Data Engineering, Vol. 11, no. 3, pp
361-385, 1999.

[11] KL Liu, AP. Sistla, C. Yu, N. Rishe, "Query
Processing in a Video Retrieval System”, IEEE Data
Engineering Conference, 1998.

[12] AP. Sistla, C. Yu, R. Venkatasubrahmanian,
"Similarity Based Retrieval of Videos”, IEEE Data
Engineering Conference, 1997

of & &

Deichstm A Btet
nejohetm AN E EAY
Indiana University(Bloomington)
2AE MAL
Case Westem Reserve
University Z4FFE1 38 9HAE (Ph.D),
Zetistn Xjodinpstif st HER 2| &t
HzAl
20003 ~ SA SMCiEt@ clXielci st MR Xjeistat
=W,
EHa 20l Knowledge Database, Data Mining, Muitimedia
Database.

olst,

19883 ~ 20002

15

