• Title/Summary/Keyword: IR Drop

Search Result 74, Processing Time 0.025 seconds

Robust Placement Method for IR Drop in Power Gating Design (파워 게이팅 설계에서 IR Drop에 견고한 셀 배치 방법)

  • Kwon, Seok Il;Han, Tae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.55-66
    • /
    • 2016
  • Power gating is one of effective techniques for reducing leakage current in semiconductor chip. However, power gating cell (PGC) which is used to switch the power source causes performance degradation and the associated reliability problem by increasing IR drop. However, the newly raised problem caused by different scaling properties between gates and metal wires demands additional considerations in power gating design. In this paper, we propose a robust cell placement based power gating design method for reducing the area for power gating cell and metal routing thus to meet IR drop requirement. Experimental results by applying the proposed techniques on the application processor for smartphone fabricated in 28nm CMOS process show that power gating cell area is reduced by 16.16% and maximum IR drop value is also decreased by 8.49% compared to existing power gating cell placement techniques.

A Study on the Amendments of the Cathodic Protection Criteria Considering IR Drops (전압강하를 고려한 전기방식 기준 개정에 관한 연구)

  • Ryou, Young-don;Lee, Jin-han;Jo, Young-do;Kim, Jin-Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.50-57
    • /
    • 2016
  • According to the urban gas business legislation, cathodic protection systems should be applied for buried steel gas pipelines to prevent corrosion. In advanced countries including United States, the criteria for Cathodic Protection Potential is at least -850mV with respect to a saturated copper/copper sulfate electrode(CSE) when the CP applied, and the IR drops must be considered for valid interpretation. However, the IR drop through the pipe to soil boundary has been neglected in Korea. According to KGS code, a reference electrode must be placed in proximity to gas pipelines possible when measuring the CP potential. In this study, we have installed several solid reference electrodes around the buried pipeline(1.2m depth), lower surface(0.5m depth), and the surface individually in order to measure the CP potentials through the each reference electrode and find out the IR drops according to the location of each reference electrode. We have found the IR drop is the greatest when measuring the CP potential through the electrode placed on the ground and the IR drop is the smallest through the electrode installed near pipeline. Therefore, we have suggested the solid reference electrode should be installed as close as possible to buried pipeline in order to measure the correct CP potential without IR drop. We have also suggested the amendment of CP criteria considering IR drop.

A Study on the Low Power LDO Having the Characteristics of Superior IR Drop (우수한 IR Drop 특성을 갖는 저전력 LDO에 관한 연구)

  • Lee, Kook-Pyo;Pyo, Chang-Soo;Koh, Si-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1835-1839
    • /
    • 2008
  • Power management is a very important issue in portable electronic applications. Portable electronic devices require very efficient power management like LDO to increase the battery life. As the voltage variation of battery power is large in the application of cell phone, camera, laptop, automotive, industry application and so on, battery power is not directly used and LDO is used to supply the power of internal circuit. Besides, LDO can supply DC voltage that is lower than bauer voltage and constant DC voltage that is not related to largely fluctuated battery power. In the study, the power-save mode current and IR-drop characteristics are analyzed from a LDO with on-chip fabricated in 0.18-um CMOS technology.

Studies on the Nitrogen Effect in Red Discoloration of Rice IR 667 (수도 IR 667의 적고현상에 미치는 질소의 영향에 관한 연구)

  • 곽병화
    • Journal of Plant Biology
    • /
    • v.14 no.4
    • /
    • pp.5-13
    • /
    • 1971
  • Pot and paddy field tests were conducted to study red discoloration of rice var. IR 667 leaves with reference to the leading Korean native variety Jinhung and Paldal, with the following results: 1. Minor elements such as Mn, Fe, B, Al, Ca and Si had no influence on the discoloration, but a supply of various soluble nitrogen compounds completely restricted it. The more prosperous the growth of IR 667 with nitrogen, the more severe the discoloration appears when nitrogen absorptin becomes limited. 2. Chlorotic pigments extracted from both IR 667 and Jinhung were compared spectrophotometrically, and found to have different spectral peaks. IR 667 had peak closer to red than Jinhung, indicating the characteristic of the variety. IR 667 was observed to be more sensitive to nitrogen deficiency than Jinhung or the other japonica variety. 3. It was concluded that all the factors limiting nitrogen supply for IR 667 growth, such as low nitrogen application, restriction of root respiration (low temperature, poor drainage, toxic gases or substances in the root zone, etc.) and pest injuries, would result in the appearance of the so-called red discoloration, because of the reduction in nitrogen uptake. Since, the discoloration of IR 667 is varietal characteristic when grown in Korea, control of it may be beneficial cultural practice in increasing grain yield, although the increased succeptibility to pests and a drop in the rate of maturity due to relatively high nitrogen level in the leaves may result in an unexpected drop in yield. It is anticipated that further exploration conducted from practical point of view will establish the relatioknships between the extent of red discoloration, nitrogen availability and grain yield in IR 667.

  • PDF

A study on plasma-assisted patterning and doubly deposited cathode for improvement of AMOLED common electrode IR drop

  • Yang, Ji-Hoon;Kwak, Jeong-Hun;Lee, Chang-Hee;Hong, Yong-Taek
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.481-484
    • /
    • 2008
  • In order to reduce IR drop through common electrode in AMOLED, we propose a novel method to form electrical contact between highly-conductive bus lines and common electrode by using a plasma-assisted patterning of OLED layers and double deposition of the common electrode. Plasma-assisted patterning effects on OLED performance and degradation have been investigated. This patterning method caused turn-on voltage decrease, current flow increase at the same applied OLED voltages, quantum efficiency decrease, and rapid degradation at early stage during the lifetime test. However, comparable 70% luminance lifetime were obtained for both patterned and non-patterned OLEDs.

  • PDF

Voltage Optimization of Power Delivery Networks through Power Bump and TSV Placement in 3D ICs

  • Jang, Cheoljon;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.643-653
    • /
    • 2014
  • To reduce interconnect delay and power consumption while improving chip performance, a three-dimensional integrated circuit (3D IC) has been developed with die-stacking and through-silicon via (TSV) techniques. The power supply problem is one of the essential challenges in 3D IC design because IR-drop caused by insufficient supply voltage in a 3D chip reduces the chip performance. In particular, power bumps and TSVs are placed to minimize IR-drop in a 3D power delivery network. In this paper, we propose a design methodology for 3D power delivery networks to minimize the number of power bumps and TSVs with optimum mesh structure and distribute voltage variation more uniformly by shifting the locations of power bumps and TSVs while satisfying IR-drop constraint. Simulation results show that our method can reduce the voltage variation by 29.7% on average while reducing the number of power bumps and TSVs by 76.2% and 15.4%, respectively.

An Electrochemical Evaluation on the Crevice Corrosion of 430 Stainless Steel with Variation of Crevice Wide by Micro Capillary Tubing Method (Micro Capillary Tube 방법을 이용한 430 스테인레스강 틈의 폭변화에 따른 틈부식의 전기화학적 평가)

  • Na, Eun-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.250-254
    • /
    • 2003
  • In this study, the IR drop theory was adopted to explain the initiation of crevice corrosion in the framework of IR drop in crevice electrolyte. Furthermore, the electrochemical polarization was measured to study the mechanism of crevice corrosion for type STS430 stainless steel. lest method adopts under condition that the size of specimen is $10\times20\times5mm,\;in\;1N\;H_2SO_4+0.1N\;NaCl$ solution, and the artificial crevice gap sizes are three kinds, the Micro capillary tube size is inner diameter 0.04 mm, outer diameter 0.08 mm. Crevice corrosion is measured under the applied voltage of passivation potential -200mV/SCE, resulted from anodic potentio-dynamic polarization to the external surface along the crevice. The potential difference was measured by depth profile by Micro capillary tube which inserted in the crevice. The obtained results of this study showed that 1) As artificial crevice gap size became narrow, the current density was increased, whereas no crevice corrosion was found in the crevice gap size $3\times0.5\times16mm\;in\;1N\;H_2SO_4+0.1N\;NaCl\;solution\;at\;20^{\circ}C$ 2) potential of the crevice was about from -220 to -358mV which is lower than that of external surface potential of -200mV The results so far confirmes that the potential drop(so-called IR drop) in the crevice is one of the major mechanisms the process of crevice corrosion for 430 stainless steel.

Synthesis of Bimodally Porous γ-Alumina Granules by Sol-Gel/Oil-Drop Method (솔-젤/Oil-Drop법을 이용한 이중 다공성 γ-알루미나 그래뉼의 제조)

  • Choi, Junseo;Kim, Jinsoo;Lee, Tai-Gye
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.111-115
    • /
    • 2007
  • Bimodally porous ${\gamma}$-alumina granules, including mesopores (2~50 nm) and macropores (>50 nm), were prepared by sol-gel and oil-drop method. Mesopores are made from the voids among the alumina crystallites, while macropores are from the space of the decomposed PS particles used as physical templates during the granulation process. The product ${\gamma}$-alumina granules with the average diameter of 2 mm were characterized by FE-SEM, XRD, FT-IR, $N_2$ porosimetry, and universal mechanical testing system.

Prediction of Dynamic Power Consumption and IR Drop Analysis by efficient current modeling (효율적 전류모델을 이용한 고속의 전압 강하와 동적 파워 소모의 분석 기술)

  • Han, Sang-Yeol;Park, Sang-Jo;Lee, Yun-Sik
    • Journal of IKEEE
    • /
    • v.8 no.1 s.14
    • /
    • pp.63-72
    • /
    • 2004
  • The supply voltage has been drop rapidly and the total length of the wire increased exponentially in the nanometer SoC design environment. The ideal supply voltage was dropped sharply by the resistance and parasitic devices which stayed on the kilometers-long wire length. Even worse, it could severely affect the functional behavior of the block of the design. To analyze the effects of the long wire of the SoC while maintaining the accuracy, the modeling of the current and the RC conversion of the parasitic techniques are researched and applied. By these modeling and conversion, the multi-million gates HDTV Chipset can be analyzed within a day. The benchmark analysis of the HDTV SoC showed the superiority to the conventional methods in performance and accuracy.

  • PDF