DOI QR코드

DOI QR Code

An Electrochemical Evaluation on the Crevice Corrosion of 430 Stainless Steel with Variation of Crevice Wide by Micro Capillary Tubing Method

Micro Capillary Tube 방법을 이용한 430 스테인레스강 틈의 폭변화에 따른 틈부식의 전기화학적 평가

  • 나은영 (한국해양대학교 대학원)
  • Published : 2003.11.01

Abstract

In this study, the IR drop theory was adopted to explain the initiation of crevice corrosion in the framework of IR drop in crevice electrolyte. Furthermore, the electrochemical polarization was measured to study the mechanism of crevice corrosion for type STS430 stainless steel. lest method adopts under condition that the size of specimen is $10\times20\times5mm,\;in\;1N\;H_2SO_4+0.1N\;NaCl$ solution, and the artificial crevice gap sizes are three kinds, the Micro capillary tube size is inner diameter 0.04 mm, outer diameter 0.08 mm. Crevice corrosion is measured under the applied voltage of passivation potential -200mV/SCE, resulted from anodic potentio-dynamic polarization to the external surface along the crevice. The potential difference was measured by depth profile by Micro capillary tube which inserted in the crevice. The obtained results of this study showed that 1) As artificial crevice gap size became narrow, the current density was increased, whereas no crevice corrosion was found in the crevice gap size $3\times0.5\times16mm\;in\;1N\;H_2SO_4+0.1N\;NaCl\;solution\;at\;20^{\circ}C$ 2) potential of the crevice was about from -220 to -358mV which is lower than that of external surface potential of -200mV The results so far confirmes that the potential drop(so-called IR drop) in the crevice is one of the major mechanisms the process of crevice corrosion for 430 stainless steel.

본 연구는 전기화학적 실험측정으로 페라이트계 430스테인레스강 시험편에 인위적으로 틈을 형성시켰다. 부식용액은 IN $H_2SO_4+0.1N\;NaCl$ 전해액을 사용하였고, 각 시험편의 틈의 크기를 달리하였다. 전기화학적 평가방법은 -600mV/5CE에서 정방향으로 +1,200mV/SCE까지 주사속도 600mV/hr로 동전위 분극시험을 실시하여 부식전위, 부동태 전류밀도 등의 부식거동을 분석하였다. 그리고 정전위 분극시험을 실시하여 부동태 구간 전위 -200mV/SCE를 일정하게 인가 한 후, 틈내에 부동태 전류밀도와 틈부식 발생시간을 계측하였다 실험방법에 있어 Microcapillary tube(MCT)를 이용한 방법으로 틈내 각 지점의 전위를 틈 깊이에 따른 틈내부의 전위강하(IR Drop)에 주목하고, 575 430 스테인레스강 금속에 대한 분극특성과 연계하므로써 틈부식의 발생 원인을 '전위의 이동'의 관점에서 규명 하였다.

Keywords

References

  1. W. P. Smith, Principles of Materials Science and Engineering',McGraw-Hill, PP. 55-93 (1990)
  2. Metal hand book, 'Properties and selection of Stainless Steel',ASTM, 3, 5 (1980)
  3. J. L. Lu, Y. C. Lou and M. B. Lves, Mater. Perform, 31(10), 44(1992)
  4. M. Watson and J. Postlethwaite, 'Corrosion', 46(7), 522 (1990) https://doi.org/10.5006/1.3585142
  5. N. Stolica, Corrosion. Sci., 9, 205 (1969) https://doi.org/10.1016/S0010-938X(69)80051-X
  6. A. J. Betts, L. H. Boulton, Br. Corrosion Jr., 28(4), 279 (1993) https://doi.org/10.1179/000705993799156299
  7. S. P. Trasatti, F. Mazza, Br. Cormswn Jr., 31(2), 105 (1996)
  8. M. S De SA, C. M. Rangel, Br. Corrvsion Jr., 23(3), 186 (1988) https://doi.org/10.1179/000705988798270866
  9. J. W. Oldfield and W. H. Sutton, Br. Corrosion Jr., 13(1), 13 (1978) https://doi.org/10.1179/000705978798358671
  10. J. W. Oldfield and W. H. Sutton, Br. Cormsion Jr., 13(3), 104(1978)
  11. S. Y. Baik and E. Y. Na, 'Korean society of Maiine engineers' 27(3), 447 (2003) https://doi.org/10.3795/KSME-B.2003.27.4.447
  12. J. B. Lee, 'The corrosion science society of korea' Jr., 26(1), 26(1997)
  13. Standard Test G 5-87, Annual Book of ASTM Standards, 3(2), 79(1989)
  14. Operator's Manual, 'CMS-100 Framework Software', The Gamry Instruments, Inc., 1994
  15. H. W. Pickering and R. P. Frankenthal, J. Etectrochem. Soc.,119(10), 1297 (1972) https://doi.org/10.1149/1.2403982
  16. B. G. Ateya, H. W. Picketing, EtectrochemicaI Society Proceeding 99-27, 599-608 (1993)