DOI QR코드

DOI QR Code

Potential-dependent Complex Capacitance Analysis for Porous Carbon Electrodes

다공성 탄소전극의 전위에 따른 복소캐패시턴스 분석

  • Jang, Jong H. (School of Chemical Engineering and Research Center for Energy Conversion & Storage, Seoul National University) ;
  • Yoon, Song-Hun (School of Chemical Engineering and Research Center for Energy Conversion & Storage, Seoul National University) ;
  • Ka, Bok H. (School of Chemical Engineering and Research Center for Energy Conversion & Storage, Seoul National University) ;
  • Oh, Seung M. (School of Chemical Engineering and Research Center for Energy Conversion & Storage, Seoul National University)
  • 장종현 (서울대학교 공과대학 응용화학부 에너지변환 저장연구센터) ;
  • 윤성훈 (서울대학교 공과대학 응용화학부 에너지변환 저장연구센터) ;
  • 가복현 (서울대학교 공과대학 응용화학부 에너지변환 저장연구센터) ;
  • 오승모 (서울대학교 공과대학 응용화학부 에너지변환 저장연구센터)
  • Published : 2003.11.01

Abstract

The complex capacitance analysis was performed in order to examine the potential-dependent EDLC characteristics of porous carbon electrodes. The imaginary capacitance profiles $(C_{im}\;vs.\;log\lf)$ were theoretically derived for a cylindrical pore and further extended to multiple pore systems. Two important electrochemical parameters in EDLC can be estimated from the peak-shaped imaginary capacitance plots: total capacitance from the peak area and $\alpha_0$ from the peak position. Using this method, the variation of capacitance and ion conductivity in pores can be traced as a function of electric potential. The electrochemical impedance spectroscopy was recorded on the mesoporous carbon electrode as a function of electric potential and analyzed by complex capacitance method. The capacitance values obtained from the peak area showed a maximum at 0.3V (vs. SCE), which was in accordance with cyclic voltammetry result. The ionic conductivity in pores calculated from the peak position showed a maximum at 0.2 V (vs. SCE), then decreased with an increase in potential. This behavior seems due to the enhanced electrostatic interaction between ion and surface charge that becomes enriched at more positive potentials.

다공성 탄소전극의 전위에 짜른 EDLC(e)ectric double-layer capacitor)특성을 조사하기 위해 복소캐패시턴스분석(complex capacitance analysis)을 수행하였다. 하나의 원통형 기공에 대해 복소캐패시턴스를 이론적으로 유도하였고, 기공의 분포를 고려하여 다공성 전극에 대하여서도 계산하였다. 복소캐패시턴스의 허수부를 주파수에 대해 도시하면 피크 형태의 곡선이 얻어지는데, 이때 피크의 면적은 캐패시턴스 값의 크기와, 피크의 위치는 다공성전극의 전기화학 파라매터와 기공구조에 의해 결정되는 $\alpha_0$와 상관관계가 있음을 알 수 있었다. 이를 이용하면, 동일한 기공구조를 갖는 전극에 대해, 전위에 따른 캐패시턴스와 기공 내 이온전도도의 변화를 측정할 수 있다. 메조포러스 탄소전극에 대하여 전위를 변화시키며 electrochemical impedance spectroscopy를 측정하고 이를 복소캐패시턴스법에 의해 분석하였다. 피크 면적으로부터 구한 전위에 따른 캐패시턴스는 0.3V부근에서 최대값을 가졌는데, 이는 cyclic voltammetry 실험결과와도 일치하였다. 한편, 피크 위치로부터 구한 기공 내 이온전도도는 0.2V에서 최대 값을 가지고 전위가 증가할 수록 서서히 감소하였다. 이를 탄소 표면전하의 증가로 인해 이온/표면의 전기적 작용력이 커졌기 때문으로 해석하였다.

Keywords

References

  1. J.-P. Randin and E. Yeager, J. Etectmanat. Chem., 36, 257 (1972)
  2. J.-P. Randin and E. Yeager, J. Etectroanat. Chem., 58, 313 (1975) https://doi.org/10.1016/S0022-0728(75)80089-1
  3. K. Kinoshita, 'Carbon: Electrochemical and Physicochemical Properties', John Wiley & Sons, New York (1988)
  4. B.E. Conway, 'Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications', p. 528, KluwerAcademic / Plenum Publishers, New York (1999)
  5. K. Xu, S.P. Ding, and T.R. Jow, J. Etectrochem. Soc., 146, 4172(1999) https://doi.org/10.1149/1.1392609
  6. J.H. Jang and S.M. Oh, 7. Etectrochem. Soc., submitted (2003)
  7. R. de Levie, 'Advances in Electrochemistry and Electrochemical Engineering', Vol. VI, P. Delahay, Editor, P. 329, John Wiley & Sons, New York (1967)
  8. H. Keiser, K.D. Beccu, and M.A. Gutjahr, Etectmchim. Acta, 21,539 (1976) https://doi.org/10.1016/0013-4686(76)85147-X
  9. R. Kotz and M. Carlen, Etectrochim. Acta, 45, 2483 (2000) https://doi.org/10.1016/S0013-4686(00)00354-6
  10. B.E. Conway and W.G. Pell, J. Power Sources, 105, 169 (2002) https://doi.org/10.1016/S0378-7753(01)00936-3
  11. C.-H. Kim, S.-I. Pyun, and H.-C. Shin, J. Etectmchem. Soc., 149,A93 (2002) https://doi.org/10.1149/1.1429223
  12. Z. Kemer and T. Pajkossy, Etectmchim. Acta, 46, 207 (2000) https://doi.org/10.1016/S0013-4686(00)00574-0
  13. J. Lee, S. Yoon, T. Hyeon, S.M. Oh, and K.B. Kim, Chem.Commun., 21, 2177 (1999)
  14. S. Yoon, J. Lee, T. Hyeon, and S.M. Oh, J. EIectivchem. Soc., 147,2507 (2000) https://doi.org/10.1149/1.1393561
  15. H.-K. Song, H.-Y. Hwang, K.-H. Lee, and L.H. Dao, Electrochim. Acta, 45, 2241 (2000) https://doi.org/10.1016/S0013-4686(99)00436-3
  16. H.-K. Song, Y.-H. Jung, K.-H. Lee, and L.H. Dao, Electmchim.Acta, 44, 3513 (1999) https://doi.org/10.1016/S0013-4686(99)00121-8
  17. K. Kinoshita, 'Carbon: Electrochemical and Physicochemical Properties', P. 299, John Wiley & Sons, New York (1988)
  18. M.G. Sullivan, R. Kotz, and O. Haas, J. EIectrvchem. Soc., 147, 308(2000) https://doi.org/10.1149/1.1393192
  19. B.E. Conway, W.G. Pell, and T.-C. Liu, J. Power Sources, 65, 53 (1997) https://doi.org/10.1016/S0378-7753(97)02468-3
  20. J. Koresh and A. SoSer, J. Etectmchem. Soc., 124, 1379 (1977) https://doi.org/10.1149/1.2133657
  21. W.Y. Lo, K.Y. Chan, and K.L. Mok, J. Phys.: Condens. Matter, 6,A145 (1994)
  22. W.Y. Lo, K.Y. Chan, M. Lee, and K.L. Mok, J. EIectroanaI. Chem.,450, 265 (1998) https://doi.org/10.1016/S0022-0728(97)00643-8

Cited by

  1. Supercapacitor Performance of Hydrous Ruthenium Oxide Electrodes Prepared by Electrophoretic Deposition vol.153, pp.2, 2006, https://doi.org/10.1149/1.2138672
  2. Electrochemical activation behaviors studied with graphitic carbon electrodes of different interlayer distance vol.56, pp.27, 2011, https://doi.org/10.1016/j.electacta.2011.08.117
  3. Complex Capacitance Analysis of Ionic Resistance and Interfacial Capacitance in PEMFC and DMFC Catalyst Layers vol.156, pp.11, 2009, https://doi.org/10.1149/1.3187928
  4. Impedance analysis of porous carbon electrodes to predict rate capability of electric double-layer capacitors vol.267, 2014, https://doi.org/10.1016/j.jpowsour.2014.05.058
  5. Electrophoretic deposition (EPD) of hydrous ruthenium oxides with PTFE and their supercapacitor performances vol.52, pp.4, 2006, https://doi.org/10.1016/j.electacta.2006.01.075
  6. Effect of Nafion ionomer and catalyst in cathode layers for the direct formic acid fuel cell with complex capacitance analysis on the ionic resistance 2011, https://doi.org/10.1016/j.electacta.2011.02.005
  7. On the electric double-layer structure at carbon electrode/organic electrolyte solution interface analyzed by ac impedance and electrochemical quartz-crystal microbalance responses vol.56, pp.21, 2011, https://doi.org/10.1016/j.electacta.2011.06.044