• Title/Summary/Keyword: IPMC

Search Result 84, Processing Time 0.029 seconds

Electrochemical Response of Polymer Actuators using Finite Element Formulation and ANSYS/Emag

  • Kang, Sung-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.369-375
    • /
    • 2010
  • The two-dimensional finite element formulation for the basic field equations governing electrochemical responses of ionic conducting polymer-metal composite(IPMC) actuators is proposed in the present study. Biaxial deformation of a platinum plated Nafion actuator having 4 electrodes is dominated by electro-osmosis of hydrated ions and self-diffusion of free water molecules. Some numerical studies for IPMC actuators with electric field are carried out in order to show the validity of the proposed formulation and electric field analysis for the initial condition of total charge distribution are conducted using commercial code ANSYS/Emag.

그라핀 전극을 이용한 유연 투명 구동기 제작 및 특성 평가

  • Park, Yun-Jae;Im, Yeong-Jin;Im, Gi-Hong;Choe, Hyeon-Gwang;Jeon, Min-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.286.2-286.2
    • /
    • 2013
  • 기존의 이온성 고분자-금속 복합체(IPMC)는 백금(Pt)전극을 이온성 전기활성 고분자(Ionic electroactive polymer)인 나피온에 무전해 도금으로 만들어졌다. 본 연구는 백금전극을 그래핀으로 대체하여 투명 이온성 고분자-그래핀 복합체(IPGC)를 제작하였다. 그래핀은 근적외선 화학기상증착법(NIR-CVD)으로 전이금속 (Cu, Ni) 위에 탄화수소 가스(CH4)를 이용하여 성장하였다. 전이 금속위에 성장된 그래핀을 나피온 양쪽면에 van der Waals 결합력을 이용하는 습식 전이공정으로 전극을 형성하였다. IPGC는 면 저항(4-point probe), 투과도(UV/Vis spectrometer) 및 라만 분광법(Micro Raman spectroscopy)의 측정으로 그래핀 전극의 특성평가를 하였고, 전계방사 주사전자현미경(Field Emisson Scanning Electron Microscope; FE-SEM)을 사용하여 IPGC의 구조적 특성을 확인하였다. 제작된 IPGC의 성능은 백금전극을 이용한 IPMC의 변위(displacement), 힘(force), 작동 주파수(Operating frequency) 분석을 통해 비교 평가하였다.

  • PDF

Dynamic Modeling and Design of Finger Exoskeleton Using Polymer Actuator (고분자 구동체를 이용한 손가락 외골격기구의 설계 및 동력학적 모델 개발)

  • Jeong, Gwang-Hun;Kim, Yoon-Jeong;Yoon, Bye-Ri;Wang, Hyuck-Sik;Song, Dae-Seok;Kim, Sul-Ki;Rhee, Kye-Han;Jho, Jae-Young;Kim, Dong-Min;Lee, Soo-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.717-722
    • /
    • 2012
  • This paper presents the design and dynamic model of the finger exoskeleton actuated by Ionic Polymer Metal Composites (IPMC) to assist a tip pinch task. Although this exoskeleton will be developed to assist 3 degree-of-freedom motion of each finger, it has been currently made to perform the tip pinch task using 1 degree-of-freedom mechanism as the first step. The six layers of IPMC were stacked in parallel to increase the low actuation force of IPMC. In addition, the finger dummy was manufactured to evaluate the performance of the finger exoskeleton. The pinch task experiments, which were performed on the finger dummy with the developed exoskeleton, showed that the pinch force close to the desired level was obtained. Moreover, the dynamic model of the exoskeleton and finger dummy was developed in order to perform the various analyses for the improvement of the exoskeleton.

MDOF Ionic-Polymer-Metal-Composite Actuators with Selectively Grown Multiple Electrodes (선택적으로 성장 시킨 다중 전극판을 갖는 다자유 IPMC 작동기)

  • Jeon, Jin-Han;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.294-298
    • /
    • 2008
  • The ionic polymer-metal composite actuators with selectively grown multiple electrodes were developed to mimic the swimming locomotion of a fish. The developed method is based on combining electroplating with the electroless chemical reduction using the patterned mask. The advantages of this fabrication method are that the initial compositing between the polymer and platinum particles can be assured by the chemical reduction method, and the thickness of each electrode can be controlled easily and rapidly by electroplating. By using the fabricated actuator with a multiple degree of freedom, the oscillatory wave of the flexible membrane actuator was generated and a twisting motion was also realized to verify the possibility of mimicking the fish-like locomotion. The frequency response function was analyzed to investigate the natural frequency and the damping factor by a mechanical shaker and direct electrical excitation through the swept-sine method. Present results show that this novel method can be a promising technique to easily pattern each of multiple electrodes and to implement the biomimetic motion of the polymer actuators with good mechanical bending performance.

  • PDF

Study of a Conducting Nafion Film-Gold Electrode Actuator (전도성 네피온필름-금 전극층 액츄에이터에 관한 연구)

  • Jung, Won-Chae;Kim, Hyung Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.5
    • /
    • pp.360-366
    • /
    • 2013
  • For conventional electrical actuators, the materials are mainly made up of metals, which mean they are prone to corrosion and electrical sparking. Replacing these systems with polymer metal composite based materials can be solved both problems. Considering their excellent electromechanical property, low device fabrication cost, light weight, and good electrical conductivity, the actuator based on ionic polymer metal composite (IPMC) was fabricated using Nafion film, NaOH 0.1 molar solution, and Au electrode. IPMCs exhibit good electrostatic property which means they can in principle be used in making actuators based on electromechanical motions. The resistance measurements of Nafion film after soaking in NaOH and deionized water were demonstrated and compared each other. The result of sample soaked in NaOH showed better electrical conductivity than in deionized water. The fabricated IPMC actuator exhibits a large deformation of bending displacement of approximately 9 mm with applied low AC voltage 6.89 V at 2.84 Hz. The result of computer simulation was also very similar and shown as a bending displacement of 8.6085 mm.

Improved IPMCs and It's Application for Flapping Actuator (IPMCs(Ionic Polymer Metal Composites) 성능 개선 및 날갯짓 작동기로의 응용)

  • Lee, Soon-Gie;Yoo, Young-Tai;Heo, Seok;Park, Hoon-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.723-726
    • /
    • 2005
  • The two major obstacles in the application of IPMC to flapping actuators operated in the air are solvent loss and actuation force. In this paper, solvent loss of various IPMCs made of Nafion$^{TM}$117(183$\mu$m thickness) has been experimentally investigated to find out the best combination of cation and solvent for minimal solvent loss in IPMCs and higher actuation force. For this purpose. experiments for the internal solvent loss measurement of IMPCs have been conducted for various combinations of cation and solvent. From the experiments, it was found that heavy water showed improvement in the operating time up to more than two minutes. in the tip force measurement of IPMCs, it was found that smaller and thicker IPMCs produced larger tip forces. However, the shorter IPMCs generated reduced actuation displacements and created flapping motion with decreased natural frequency. For the design of flapping device actuated by 5mm wide, 10mm long, 0.2mm thick IPMCs were used in the stacked form. Since the actuation force is a few gram-force, we stacked five IPMCs to improve actuation force. To amply the actuation force, rack-and-pin ion type hinge was used for the flapping device and insect (Cicadidae) wing was attached to the stacked IPMC actuator. In the flapping test, the device could generate flapping angle of 15$^{\circ}$ at 6Hz excitation by 2.5 voltage square wave input.

  • PDF

Investigations on ionic polymer actuators based on irradiation-crosslinked sulfonated poly(styrene-ran-ethylene)

  • Wang, Xuan-Lun;Oh, Il-Kwon;Xu, Liang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.316-317
    • /
    • 2009
  • The ion-exchange membrane, Nafion, remains as the benchmark for a majority of research and development in IPMC technology. In this research, we employed a novel ionomer named by sulfonated poly(styrene-ran-ethylene) (SPSE) that is crosslinked by UV irradiation. The sulfonic acid groups were stable during the UV irradiation crosslinking process. Water uptake, ion exchange capacity, and proton conductivity are characterized for both pure SPSE and crosslinked SPSE membrane. The bending responses of SPSE actuators under both direct current (DC) and alternating current (AC) excitations were investigated. The voltage-current behaviors of the actuators under AC excitations are also measured. Results showed the crosslinked SPSE actuators have better electromechanical performance than that of pure SPSE actuator with regard to tip displacement as a novel smart material.

  • PDF

Performance Test of Nano-Composite Actuator Based on Fullerene Mixed Nafion (풀러렌이 혼입된 나피온기반 나노복합체 작동기의 성능평가)

  • Jung, Jung-Hwan;Lee, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.374-375
    • /
    • 2008
  • In this study, the nano-composite actuator based on Fullerene and Nafion was newly developed to improve the electro active polymer actuators. The tensile test was employed to define the mechanical stiffness and strength of the nano-composite membrane. Also, the bending displacement of the Fullerene-Nafion based nano-composite actuator was investigated under DC and AC excitations with various magnitudes and frequencies. As a result, the new nano-composite actuator based on Fullerene-Nafion shows much larger deformation than the pure Nafion based actuator and solves the straightening back Problem of the previous electro active polymer actuators.

  • PDF

Ionic Polymer-Metal Composite Actuator with Increased Air-Operating stability by Using Ionic Liquids

  • Lee, Jang-Yeol;Han, Man-Jae;Lee, Sung-Won;Park, Sun-Jin;Yoon, Bye-Ri;Jho, Jae-Young
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.246-246
    • /
    • 2006
  • Ionic polymer-metal composite (IPMC) soaked with various ionic liquids was prepared by using polystyrene sulfonic acid-grafted poly(vinylidene fluoride-co-hexafluoropropylene) as ion-exchange membrane (IEM). The prepared IPMCs were effectively deformed three times larger and actuated for 300 times longer than those of Nafion with water at the same applied conditions. The experimental results indicated than the increase in the bending capability can be caused by the increase in the improved properties of the IEMs and ionic liquids such as uptake content and ionic conductivity. And air-operating stability of the IPMCs is appreciably governed by various physical and electrochemical properties of soaked solvents in IEMs.

  • PDF