DOI QR코드

DOI QR Code

Study of a Conducting Nafion Film-Gold Electrode Actuator

전도성 네피온필름-금 전극층 액츄에이터에 관한 연구

  • Jung, Won-Chae (Department of Electronic Engineering, Kyonggi University) ;
  • Kim, Hyung Min (Department of Mechanical System Design Engineering, Kyonggi University)
  • 정원채 (경기대학교 전자공학과) ;
  • 김형민 (경기대학교 기계시스템공학과)
  • Received : 2013.02.28
  • Accepted : 2013.04.24
  • Published : 2013.05.01

Abstract

For conventional electrical actuators, the materials are mainly made up of metals, which mean they are prone to corrosion and electrical sparking. Replacing these systems with polymer metal composite based materials can be solved both problems. Considering their excellent electromechanical property, low device fabrication cost, light weight, and good electrical conductivity, the actuator based on ionic polymer metal composite (IPMC) was fabricated using Nafion film, NaOH 0.1 molar solution, and Au electrode. IPMCs exhibit good electrostatic property which means they can in principle be used in making actuators based on electromechanical motions. The resistance measurements of Nafion film after soaking in NaOH and deionized water were demonstrated and compared each other. The result of sample soaked in NaOH showed better electrical conductivity than in deionized water. The fabricated IPMC actuator exhibits a large deformation of bending displacement of approximately 9 mm with applied low AC voltage 6.89 V at 2.84 Hz. The result of computer simulation was also very similar and shown as a bending displacement of 8.6085 mm.

Keywords

References

  1. C. K. Chung, P. K. Fung, Y. Z. Hong, M. S. Ju, C. C. K. Lin, and T. C. Wu, Sensor. Actuat. B117, 367 (2006).
  2. M. Shahinpoor and K. J. Kim, Smart Mater. and Structure, 10, 819 (2001). https://doi.org/10.1088/0964-1726/10/4/327
  3. K. J. Kim and M. Shahinpoor, Smart Mater. and Structure, 12, 65 (2003). https://doi.org/10.1088/0964-1726/12/1/308
  4. M. Shahinpoor and K. J. Kim, Smart Mater. and Structure, 14, 197 (2005). https://doi.org/10.1088/0964-1726/14/1/020
  5. J. J. Park, S. E. Cha, H. J. Ahn, and S. K. Lee, Intl. J. of Control Automationand Systems, 4, 748 (2006).
  6. J. Y. Li and S. Nemat-Nasser, Mechanics of Mater., 32 303 (2000). https://doi.org/10.1016/S0167-6636(00)00002-8
  7. T. A. Kovacs, Micromachined Transducers Source Book (McGraw Hill, Boston, 1998) p. 278.
  8. T. M. Adams and R. A. Layton, Introductory MEMS Fabrication and Applications (Springer, Terre Haute, Indiana 2010) p. 230.
  9. F. Liu, B. Yi, D. Xing, J. Yu, and H. Zhang, J. of Membrane Science, 212 213 (2003). https://doi.org/10.1016/S0376-7388(02)00503-3
  10. L. Sun and T. Okada, Analytica Chimica Acta, 421, 83 (2000). https://doi.org/10.1016/S0003-2670(00)01030-8
  11. K. A. Mauritz and R. B. Moore, Chem. Rev., 104, 4535 (2004). https://doi.org/10.1021/cr0207123
  12. D. Pugal, K. J. Kim, A. Punning, and H. Kasemagi, J. of Appl. Phys., 103, 908 (2008).
  13. A. A. Tseng, Nanofabrication Fundamentals and Applications (World Scientific, New Jersey, 2008) p. 544.
  14. J. W. L. Zhau, H. Chan, T. K. H. To, W. C. Lai, and W. J. Li, IEEE/ASME TrSactions. on Mechatronics, 9, 334 (2004). https://doi.org/10.1109/TMECH.2004.828652
  15. R. Tiwari and K. J. Kim, Smart Mater. Struct. 19, 1 (2010).
  16. Z. Zhu, H. Chen, Y. Wang, and B. Li, Proc. SPIE, (San Diego, 2012) p. 117.
  17. S. Goswani, S. Klaus, and J. Benziger, Langmuir, 24, 8627 (2008). https://doi.org/10.1021/la800799a
  18. S. G. Lee, H. C. Park, S. D. Panidita, and Y. Yoo, Inter. J. Control Automation and Systems, 4, 748 (2006).