• Title/Summary/Keyword: IGBT switching transient

Search Result 21, Processing Time 0.019 seconds

A New Active Gate Drive Circuit for High Power IGBTs (대용량 IGBT를 위한 새로운 능동 게이트 구동회로)

  • 서범석;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.111-121
    • /
    • 1999
  • This paper deals with an active gate drive (AGD) technolo밍T for high power IGBTs. It is based on an optimal c combination of several requirements necessmy for good switching performance under hard switching conditions, The s scheme specifically combines together the slow drive requirements for low noise and switching stress and the fast driver requirements for high speed switching and low switching energy loss The gate drive can also effectively dampen oscillations during low cunent turnlongrightarrowon transient in the IGBT, This paper looks at the conflicting requirements of the c conventional gate dlive circuit design and the experimental results show that the proposed threelongleftarrowstage active gate dlive t technique can be an effective solution.

  • PDF

Transient Analysis of PT-IGBT with Different Temperature (PT-IGBT의 온도에 따른 과도특성해석)

  • 이호길;류세환;이용국;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.25-28
    • /
    • 2000
  • In this study, Transient Characteristics of the Punch-Through Insulated Gate Bipolar Transistor (PT-IGBT) has been studied. On the contraty to Non-Punch Through Insulated Gate Bipolar Transistor(NPT-IGBT), PT-IGBT has buffer layer It has a simple drive circuit controlled by the gate voltage of the MOSFET and the low on-state resistance of the bipolar junction transistor. In this paper, the transient characteristics with temperature of the PT-IGBT has been analyzed analytically. PT-IGBT is made to reduce switching power loss. Excess Minority carrier distribution inactive base region and base charge, the rate of voltage with time is expressed analytically to include buffer layer.

  • PDF

Prediction of the transient response of the IGBT using the Spice parameter (Spice parameter를 이용한 IGBT의 과도응답 예측)

  • 이효정;홍신남
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.815-818
    • /
    • 1998
  • The Insulated Gate Bipolar Transistor has the characteristics of MOSFET and BJT. The characteristics of proposed device exhibit high speed switching, the voltage controlled property, and the low ON resistance. This hybrid device has been used and developed continuously in the power electronic engineering field. We can simulate many IGBT circuits, such as the motor drive circuit, the switching circuits etc, with PSpice. However, some problems in PSpice is that the IGBT is old-fashioned and is very difficult to get it. In this paper, the IGBT in PSpice is considered as the basic structure. We changed the valuse of base width, gate-drain overlaping area, device area, and doping concentration, then calculated MOS transconductance, ambipolar recombination lifetime etc. Using this resultant parameter, we could predict the transient response characteristicsof IGBT, for examplex, voltage overshoot, the rising curve of voltage, and the falling curve of current.

  • PDF

Improved Circuit Model for Simulating IGBT Switching Transients in VSCs

  • Haleem, Naushath Mohamed;Rajapakse, Athula D.;Gole, Aniruddha M.
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1901-1911
    • /
    • 2018
  • This study presents a circuit model for simulating the switching transients of insulated-gate bipolar transistors (IGBTs) with inductive load switching. The modeling approach used in this study considers the behavior of IGBTs and freewheeling diodes during the transient process and ignores the complex semiconductor physics-based relationships and parameters. The proposed circuit model can accurately simulate the switching behavior due to the detailed consideration of device-circuit interactions and the nonlinear nature of model parameters, such as internal capacitances. The developed model is incorporated in an IGBT loss calculation module of an electromagnetic transient simulation program to enable the estimation of switching losses in voltage source converters embedded in large power systems.

Modeling of Anode Voltage Drop for PT-IGBT at Turn-off (턴-오프 시 PT-IGBT의 애노드 전압 강하 모델링)

  • Ryu, Se-Hwan;Lee, Ho-Kil;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.23-28
    • /
    • 2008
  • In this paper, transient characteristics of the Punch Through Insulated Gate Bipolar Transistor (PT-IGBT) have been studied. On the contrary to Non-Punch Through Insulated Gate Bipolar Transistor(NPT-IGBT), it has a buffer layer and reduces switching power loss. It has a simple drive circuit controlled by the gate voltage of the MOSFET and low on-state resistance of the bipolar junction transistor. The transient characteristics of the PT-IGBT have been analyzed analytically. Excess minority carrier and charge distribution in active base region, the rate of anode voltage with time are expressed analytically by adding the influence of buffer layer. The experimental data is obtained from manufacturer. The theoretical predictions of the analysis have been compared with the experimental data obtained from the measurement of a device(600 V, 15 A) and show good agreement.

Analysis of excess minority carrier and charge wish lifetimes in N-dirft region of NPT-IGBT (수명시간에 따른 NPT-IGBT의 N-drift 영역에서의 과잉소수 캐리어와 전하량 분석)

  • 류세환;이용국;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.844-847
    • /
    • 2001
  • In this work, transient characteristics of the Non-Punch Through(NPT) Insulated Gate Bipolar Transistor(IGBT) has been studied. we has analyzed with lifetimes excess minority carrier injected into N-dirft, base region of IGBT's BJT part and accumulated charge of on-state which affected swiching characteristic. In this paper, excess minority carrier and charge distribution in active base region is expressed analytically. This analysis proposed optical trade-off between lifetimes and accumulated charge for decreasing switching losses because charge result in switching loss when device was tuned off.

  • PDF

Power Loss Modeling of Individual IGBT and Advanced Voltage Balancing Scheme for MMC in VSC-HVDC System

  • Son, Gum Tae;Lee, Soo Hyoung;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1471-1481
    • /
    • 2014
  • This paper presents the new power dissipation model of individual switching device in a high-level modular multilevel converter (MMC), which can be mostly used in voltage sourced converter (VSC) based high-voltage direct current (HVDC) system and flexible AC transmission system (FACTS). Also, the voltage balancing method based on sorting algorithm is newly proposed to advance the MMC functionalities by effectively adjusting switching variations of the sub-module (SM). The proposed power dissipation model does not fully calculate the average power dissipation for numerous switching devices in an arm module. Instead, it estimates the power dissipation of every switching element based on the inherent operational principle of SM in MMC. In other words, the power dissipation is computed in every single switching event by using the polynomial curve fitting model with minimum computational efforts and high accuracy, which are required to manage the large number of SMs. After estimating the value of power dissipation, the thermal condition of every switching element is considered in the case of external disturbance. Then, the arm modeling for high-level MMC and its control scheme is implemented with the electromagnetic transient simulation program. Finally, the case study for applying to the MMC based HVDC system is carried out to select the appropriate insulated-gate bipolar transistor (IGBT) module in a steady-state, as well as to estimate the proper thermal condition of every switching element in a transient state.

An Improved Gate Control Scheme for Overvoltage Clamping Under High Power IGBTs Switching (대용량 IGBT 스위칭 시 과전압 제한을 위한 향상된 게이트 구동기법)

  • 김완중;최창호;이요한;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.222-230
    • /
    • 1998
  • This paper proposes a new gate drive circuit for high power IGBTs which can reduce the harmful effect of reverse recovery current at turn-on and actively suppress the overvoltage across the driven IGBT at turn-off without a snubber circuit. The turn-on scheme decreases the rising rate of the collector current by inereasing the input capacitance at turn-on transient when the gate-emitter voltage goes above threshold voltage. It results in soft transient of the reverse recovery current with no variation in turn-on delay time. The turn-off driving scheme has adaptive feature to the amplitude of collector current, so that the overvoltage can be limited much effectively at the fault collector current. Experimental results under various normal and fault conditions prove the effectiveness of the proposed circuit.

  • PDF

A Mock Running And Transient State Test of Propulsion VVVF Inverter for Electric Locomotive using A Inertia Load (관성부하를 이용한 전동차 추진용 VVVF 인버터의 모의주행 및 과도상태시험)

  • 정만규;서광덕
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.6
    • /
    • pp.491-499
    • /
    • 1999
  • This paper is on the high perfonnance propulsion IGBT VVVF inverter adopted new technique for railways. To prove the high performance and stabilit~r of traction, running tests are carried out under the simulated condition alike real field. The tests are perfonned on not only a steady states but also a transient states such a as input voltage variation using inertia load equivalent to 160tons train. The vector control technique is a adopted to improve traction for 4 motors. The low switching synchronous PW1\l method based on a space v voltage vector modulation is pro\XlSed as the optimal method for propulsion system railway. The output voltage l is controlled continuously to six step by prolxlsed ovennodu]ation technique without sudden torque variation.

  • PDF

Analysis on the Switching Surge characteristic of Cable Pulling of High-Voltage Induction Motor Fed by Inverter (인버터 구동 고압 유도전동기의 케이블 포설시 스위칭 써지 특성 분석)

  • Kwon, Young-Mok;Kim, Jae-Chul;Song, Seung-Yeop;Shin, Joong-Eun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.63-65
    • /
    • 2004
  • The recent advancement in the power electronic technique has increased the use of induction motor fed by inverter using high-frequency switching devices. Also the tendency is toward larger size and higher voltage. Therefore, The IGBT (Insulated-Gate Bipolar Transistor) that is high switching frequency element has been using increase. But, The switching surge voltage was occurred by high switching frequency of inverter has appeared a voltage doubling in the motor input terminal due to mismatching of cable characteristic impedance and motor characteristic impedance. Actually, The Switching surge voltage became the major cause to occur the insulation failure by serious voltage stress in the stator winding of induction motor. The short during rise time of switching surge and cable length is increased, the maximum transient voltage seen at the motor terminals increases. In this paper, Analyzed switching surge transient voltage of power cable pulling is used EMTP(Electromagnetic Transient Program) at the induction motor terminal and in cable.

  • PDF